自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 并网变流器无模型预测控制/直流微网并网 1外环电压环 2预测电流控制器,使用基于超局部模型的无

无模型预测控制在并网变流器中的应用,以及外环电压环在直流微网并网中的应用,可以有效地提高的稳定性和可靠性。在基于超局部模型的无模型控制中,采用自适应滑模观测器来观测超局部模型集总扰动,可以实现对行为的精确预测和控制。基于超局部模型的无模型控制是一种无模型预测控制的变种,其核心思想是通过观测超局部模型集总扰动来控制的行为。无模型预测控制是一种先进的控制策略,其核心思想是在没有建立精确数学模型的情况下,通过预测未来的行为来控制当前的行为。外环电压环是直流微网并网中的重要组成部分,其主要功能是维持电压的稳定。

2025-03-07 22:18:25 800

原创 混合动力汽车simulink模型 ①基于模糊规则的控制策略; ②整车similink模型中包含工况输入

本文详细探讨了基于扩展卡尔曼滤波(EKF)的车辆状态估计方法,包括EKF算法原理、车辆运动模型、Simulink模型与MATLAB代码实现等方面。本文还提供了基于EKF的车辆状态估计的实验结果与分析。实验结果表明,基于EKF的车辆状态估计方法能够准确估计车辆的横纵向位置、行驶轨迹、姿态等参数,为智能驾驶、自动驾驶辅助等应用提供了可靠的基础。②整车similink模型中包含工况输入模型、驾驶员模型、发动机模型、电机模型、制动能量回收模型、转矩分配模型、运行模式切换模型、档位切换模型纵向动力学模型;

2025-03-07 17:53:13 1345

原创 IASB+transformer双卷积时间序列预测 需知:好的创新性模型可以事半功倍。 目前太多流水paper,都

从金融市场的股票预测,到气候变化的模式识别,再到智能交通的流量预测,无一不需要准确和高效的时间序列预测模型。传统的CNN和LSTM模型虽然已在这些领域取得了一定的成功,但随着数据复杂性的增加,其精度和效率有时难以满足需求。目前太多流水paper,都是旧模型,老师已经审美疲劳,很难发好一点的刊,这种模型很新,让paper审核老师眼睛一亮,老师就会觉得你有水平,关注顶会前沿热点,非常好中稿。适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。

2025-03-06 20:29:14 1707

原创 格子玻尔兹曼方法LBM模拟相分离伪势模型

格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种用于模拟流体流动的数值方法,它通过模拟粒子在格子上的运动来获得流体的宏观行为。相分离伪势模型则是一种用于描述多相流体中相界面动态行为的方法,能够模拟复杂流体的多相流动现象。通过格子玻尔兹曼方法模拟相分离伪势模型,可以实现对复杂流体相分离现象的数值模拟。格子玻尔兹曼方法是一种基于统计物理的流体数值模拟方法,它将流体看作是由大量粒子组成的,通过模拟这些粒子在格子上的运动来获得流体的宏观行为。

2025-03-06 07:50:25 549

混合动力汽车Simulink模型:基于模糊规则的整车控制策略与多模块协同仿真研究,混合动力汽车Simulink模型研究:基于模糊规则的控制策略及多模块整合模型构建,混合动力汽车simulink模型 ①

混合动力汽车Simulink模型:基于模糊规则的整车控制策略与多模块协同仿真研究,混合动力汽车Simulink模型研究:基于模糊规则的控制策略及多模块整合模型构建,混合动力汽车simulink模型 ①基于模糊规则的控制策略; ②整车similink模型中包含工况输入模型、驾驶员模型、发动机模型、电机模型、制动能量回收模型、转矩分配模型、运行模式切模型、档位切模型纵向动力学模型; ④simulink模型输入输出均以中文注释。 ,1.混合动力汽车; 2.simulink模型; 3.基于模糊规则的控制策略; 4.工况输入模型; 5.驾驶员模型; 6.发动机模型; 7.电机模型; 8.制动能量回收模型; 9.转矩分配模型; 10.运行模式切换模型; 11.档位切换模型; 12.中文注释。,基于模糊规则的混合动力汽车Simulink模型:多模块协同控制策略研究

2025-03-06

格子玻尔兹曼方法LBM在模拟相分离伪势模型中的应用研究,格子玻尔兹曼方法LBM在模拟相分离伪势模型中的应用研究,格子玻尔兹曼方法LBM模拟相分离伪势模型 ,格子玻尔兹曼方法(LBM); 相分离; 伪势

格子玻尔兹曼方法LBM在模拟相分离伪势模型中的应用研究,格子玻尔兹曼方法LBM在模拟相分离伪势模型中的应用研究,格子玻尔兹曼方法LBM模拟相分离伪势模型 ,格子玻尔兹曼方法(LBM); 相分离; 伪势模型; 模拟,LBM模拟相分离的伪势格子玻尔兹曼方法

2025-03-05

基于IASB Transformer双卷积机制的时间序列预测创新模型:新思路引领高精度预测的突破与优化,基于IASB Transformer双卷积模型的时空序列预测技术:引领创新的顶会前沿模型,IAS

基于IASB Transformer双卷积机制的时间序列预测创新模型:新思路引领高精度预测的突破与优化,基于IASB Transformer双卷积模型的时空序列预测技术:引领创新的顶会前沿模型,IASB+transformer双卷积时间序列预测 需知:好的创新性模型可以事半功倍。 目前太多流水paper,都是旧模型,老师已经审美疲劳,很难发好一点的刊,这种模型很新,让paper审核老师眼睛一亮,老师就会觉得你有水平,关注顶会前沿热点,非常好中稿。 上限下限都非常高。 适合需要高等级的高手和没有经验的小白。 ASB和ICB双卷积是2024年的一个新机制,创新点顶级强,这种结合极大程度提高了模型的精度。 (有送配套顶会原理pdf) 利用ASB+ISB双卷积替常规的CNN卷积,比较lstm系列来说提高了约3%精度。 相对于常规transformer提高了5-10%的精度,效果明显而且新机制创新强 代码还可以继续缝合创新点。 优化方法。 python代码 pytorch架构 适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。 多变量输入,单变量输

2025-03-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除