UDP编程流程(UDP客户端、服务器互发消息流程)

一、UDP编程流程

1.1、 UDP概述

UDP,即用户数据报协议,是一种面向无连接的传输层协议。相比于TCP协议,UDP具有以下特点:

  1. 速度较快:由于UDP不需要建立连接和进行复杂的握手过程,因此在传输数据时速度稍快于TCP协议。
  2. 适用于简单的请求/应答应用程序:对于一些简单的、对可靠性要求不高的应用程序,如DNS查询和SNMP请求,UDP能够提供高效的传输服务。
  3. 不适用于海量数据传输:由于UDP不提供可靠的数据传输机制,因此在进行大数据传输时容易出现丢包和乱序的情况,不建议使用UDP进行此类传输。
  4. 广播和多播应用必须使用UDP:UDP支持广播和多播传输,因此对于需要进行广播和多播的应用,如视频直播和组播通信,必须使用UDP协议。

UDP应用:

UDP协议被广泛应用于各种网络应用中,包括但不限于以下几种:

  • DNS(域名解析):DNS使用UDP进行域名解析请求和响应的传输,以提高查询速度。
  • NFS(网络文件系统):NFS使用UDP进行文件操作请求和响应的传输,以提高文件访问速度。
  • RTP(实时传输协议):RTP使用UDP进行实时音视频数据的传输,以减少延迟。

此外,一些实时性要求较高的应用,如在线游戏和VoIP通话,也会选择使用UDP协议来减少延迟,提高用户体验

1.2、网络编程接口socket

Socket,也被称为"套接字",是网络编程中用于实现不同主机上进程间通信的一种技术。它提供了一种将网络通信抽象为文件操作的接口,使得程序员可以通过简单的函数调用来实现复杂的网络通信功能。

Socket的特点

  1. 文件描述符:Socket是一种文件描述符,它代表了一个通信管道的端点。通过Socket,我们可以像操作文件一样,使用read、write、close等函数来发送和接收网络数据。
  2. 通信端点:Socket是网络通信的端点,每个Socket都有一个唯一的地址,通过这个地址,我们可以与远程主机上的Socket进行通信。
  3. 网络数据操作:通过Socket,我们可以方便地进行网络数据的发送和接收。Socket提供了丰富的函数接口,如send、recv、sendto、recvfrom等,用于各种网络数据操作。
  4. Socket函数:要获得一个Socket,我们需要调用socket()函数。该函数返回一个Socket描述符,用于后续的网络通信操作。

Socket的分类

根据使用的协议和通信方式的不同,Socket可以分为以下几种类型:

  • SOCK_STREAM:流式套接字,用于TCP协议。它提供了可靠的、面向连接的通信方式,数据以流的形式传输,可以保证数据的可靠性和顺序性。
  • SOCK_DGRAM:数据报套接字,用于UDP协议。它提供了不可靠、无连接的通信方式,数据以数据报的形式传输,不保证数据的可靠性和顺序性。
  • SOCK_RAW:原始套接字,用于其他层次的协议操作。它允许直接访问网络层数据,可以用于实现自定义的网络协议。

1.3 UDP编程C/S架构

UDP网络编程流程:

服务器: 创建套接字 socket( )

                将服务器的ip地址、端口号与套接字进行绑定 bind( )

                接收数据 recvfrom()

                发送数据 sendto()

客户端:  创建套接字 socket()

                发送数据 sendto()

                接收数据 recvfrom()

                关闭套接字 close() 

二、UDP编程-创建套接字 

2.1 创建socket套接字

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
功能:
    创建一个套接字,返回一个文件描述符
参数:
    domain:通信域,协议族
    AF_UNIX 本地通信
    AF_INET ipv4网络协议
    AF_INET6 ipv6网络协议
    AF_PACKET 底层接口
type:
  套接字的类型
    SOCK_STREAM 流式套接字(tcp)
    SOCK_DGRAM 数据报套接字(udp)
    SOCK_RAW 原始套接字(用于链路层)
protocol:
    附加协议,如果不需要,则设置为0
返回值:
    成功:文件描述符
    失败:-1

特点 

  •  创建套接字时,系统不会分配端口
  •  创建的套接字默认属性
### RK3588平台NPU调用方法 #### 创建和初始化NPU环境 为了在RK3588平台上成功调用NPU进行神经网络推理或加速,首先需要确保设备已正确配置并加载了相应的驱动程序。Rockchip的官方固件通常已经预装了RKNPU驱动[^3]。 一旦确认硬件准备就绪,可以通过以下方式创建和初始化NPU环境: ```cpp #include "rknn_api.h" // 初始化模型路径和其他参数 const char* model_path = "./model.rknn"; int ret; rknn_context ctx; ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("Failed to initialize rknn context\n"); } ``` 这段代码展示了如何使用`rknn_api.h`库来初始化一个RKNN上下文对象,这一步骤对于后续的操作至关重要[^2]。 #### 加载和编译模型 接下来,在实际运行之前还需要加载预先训练好的神经网络模型文件(通常是`.rknn`格式)。此过程涉及读取模型二进制数据,并将其传递给RKNN API以便内部处理和优化。 ```cpp // 假设模型已经被转换成 .rknn 文件格式 char *model_data; // 模型的数据指针 size_t model_size; // 模型大小 FILE *fp = fopen(model_path, "rb+"); fseek(fp, 0L, SEEK_END); model_size = ftell(fp); rewind(fp); model_data = (char *)malloc(sizeof(char)*model_size); fread(model_data, sizeof(unsigned char), model_size, fp); fclose(fp); // 将模型数据传入RKNN API ret = rknn_load_rknn(ctx, &model_data, &model_size); free(model_data); if(ret != 0){ printf("Load Model Failed!\n"); } else{ printf("Model Loaded Successfully.\n"); } ``` 这里说明了从磁盘读取模型文件的具体操作流程,并通过API函数将这些信息提交给了底层框架去解析和设置好用于推断所需的资源[^1]。 #### 执行前向传播计算 当一切准备工作完成后就可以开始真正的预测工作——即让NPU执行一次完整的前向传播运算。这个阶段主要是构建输入张量、启动异步任务以及收集输出结果。 ```cpp float input_tensor[INPUT_SIZE]; // 输入特征图数组 float output_tensors[MAX_OUTPUTS][OUTPUT_SIZE]; // 输出特征图数组 struct rknn_input inputs[] = {{input_tensor}}; struct rknn_output outputs[MAX_OUTPUTS]; for(int i=0;i<NUM_ITERATIONS;++i){ memset(inputs, 0 ,sizeof(struct rknn_input)); memcpy(input_tensor, inputData[i], INPUT_SIZE*sizeof(float)); // 启动推理任务 ret = rknn_run(ctx, nullptr); if(ret!=0){ printf("Inference failed at iteration %d", i); break; } // 获取输出结果 for(size_t j=0;j<num_outputs;++j){ struct rknn_output& out = outputs[j]; size_t bufSize = OUTPUT_SIZE * sizeof(float); void* buffer = malloc(bufSize); ret = rknn_get_output(ctx, j, &out.datatype, &buffer, &bufSize, false); if(!ret && buffer){ memcpy(output_tensors[j], buffer, bufSize); free(buffer); } } } printf("All iterations completed successfully."); ``` 上述片段体现了典型的基于RKNN SDK的应用场景:先准备好待测样本作为输入;接着触发内核中的计算逻辑;最后获取到经过变换后的响应值供下一步分析所用[^4]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值