计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】

精彩专栏推荐订阅:在下方主页👇🏻👇🏻👇🏻👇🏻

💖🔥作者主页计算机毕设木哥🔥 💖

一、项目介绍

选题背景
随着生活水平的不断提升和饮食文化的日益多样化,人们对食物口味的选择呈现出明显的个性化和差异化特征。不同年龄段、不同地域、不同生活习惯的人群在口味偏好上存在着显著差异,这种差异背后蕴含着丰富的社会学、心理学和文化学规律。传统的口味调研方式主要依赖小规模问卷调查和简单的统计分析,难以处理海量用户数据,也无法深入挖掘多维度因素对口味偏好的影响机制。现代大数据技术的快速发展为食物口味差异分析提供了新的技术路径,Hadoop分布式存储技术能够有效处理大规模用户特征数据,Spark分布式计算框架具备强大的数据挖掘和分析能力,可以实现对复杂多维数据的高效处理。基于这样的技术背景,构建一套能够综合分析用户个体特征、生活习惯、地理环境、文化背景等多重因素对食物口味偏好影响的大数据分析系统具有重要的现实需求和技术可行性。

选题意义
本课题的研究意义主要体现在理论探索和实践应用两个层面。从理论角度来看,系统通过大数据技术深入挖掘年龄、运动习惯、睡眠周期、气候环境、文化背景等因素与食物口味偏好之间的关联规律,能够为饮食行为学和消费心理学研究提供数据支撑和分析工具,丰富了口味偏好形成机制的理论认知。从实践应用角度来看,系统分析结果可以为餐饮企业的菜品开发、市场定位和精准营销提供参考依据,帮助企业更好地理解目标用户群体的口味需求特点。通过可视化分析功能,系统能够直观展现不同用户群体的口味差异分布,为个性化推荐算法的设计和优化提供数据基础。从技术实践意义来看,本系统综合运用了Hadoop、Spark、Python、Django、Vue等主流大数据和Web开发技术,为计算机专业学生提供了一个较为完整的大数据项目实践案例,有助于提升对分布式计算、数据挖掘、Web开发等技术的综合运用能力。

二、视频展示

大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】

三、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts
  • 软件工具:Pycharm、DataGrip、Anaconda
  • 可视化 工具 Echarts

四、系统展示

登录模块:

在这里插入图片描述

管理模块展示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、代码展示


from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, desc, asc, when, isnan, isnull
from pyspark.sql.types import StringType, IntegerType, StructType, StructField
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.clustering import KMeans
from pyspark.ml.stat import ChiSquareTest
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
import pandas as pd
spark = SparkSession.builder.appName("FlavorAnalysis").master("local[*]").getOrCreate()
def user_taste_preference_macro_analysis(request):
    df = spark.read.csv("data/FlavorSense.csv", header=True, inferSchema=True)
    cleaned_df = df.filter(col("preferred_taste").isNotNull() & col("age").isNotNull() & 
                          col("climate_zone").isNotNull() & col("exercise_habits").isNotNull())
    taste_distribution = cleaned_df.groupBy("preferred_taste").count().orderBy(desc("count"))
    taste_results = [{"taste": row["preferred_taste"], "count": row["count"]} 
                     for row in taste_distribution.collect()]
    age_ranges = cleaned_df.withColumn("age_group", 
                                      when(col("age") < 18, "Youth")
                                      .when((col("age") >= 18) & (col("age") <= 40), "Young Adult")
                                      .when((col("age") >= 41) & (col("age") <= 60), "Middle Age")
                                      .otherwise("Senior"))
    age_distribution = age_ranges.groupBy("age_group").count().orderBy(desc("count"))
    age_results = [{"age_group": row["age_group"], "count": row["count"]} 
                   for row in age_distribution.collect()]
    climate_distribution = cleaned_df.groupBy("climate_zone").count().orderBy(desc("count"))
    climate_results = [{"climate": row["climate_zone"], "count": row["count"]} 
                       for row in climate_distribution.collect()]
    exercise_distribution = cleaned_df.groupBy("exercise_habits").count().orderBy(desc("count"))
    exercise_results = [{"exercise": row["exercise_habits"], "count": row["count"]} 
                        for row in exercise_distribution.collect()]
    cuisine_distribution = cleaned_df.groupBy("historical_cuisine_exposure").count().orderBy(desc("count"))
    cuisine_results = [{"cuisine": row["historical_cuisine_exposure"], "count": row["count"]} 
                       for row in cuisine_distribution.collect()]
    analysis_results = {
        "taste_preference_distribution": taste_results,
        "age_structure_distribution": age_results,
        "climate_zone_distribution": climate_results,
        "exercise_habits_distribution": exercise_results,
        "cuisine_background_distribution": cuisine_results
    }
    return JsonResponse(analysis_results)
def lifestyle_taste_correlation_analysis(request):
    df = spark.read.csv("data/FlavorSense.csv", header=True, inferSchema=True)
    cleaned_df = df.filter(col("preferred_taste").isNotNull() & col("age").isNotNull() & 
                          col("exercise_habits").isNotNull() & col("sleep_cycle").isNotNull())
    age_ranges = cleaned_df.withColumn("age_group", 
                                      when(col("age") < 18, "Youth")
                                      .when((col("age") >= 18) & (col("age") <= 40), "Young Adult")
                                      .when((col("age") >= 41) & (col("age") <= 60), "Middle Age")
                                      .otherwise("Senior"))
    age_taste_analysis = age_ranges.groupBy("age_group", "preferred_taste").count()
    age_taste_pivot = age_taste_analysis.groupBy("age_group").pivot("preferred_taste").sum("count").fillna(0)
    age_taste_results = [row.asDict() for row in age_taste_pivot.collect()]
    exercise_taste_analysis = cleaned_df.groupBy("exercise_habits", "preferred_taste").count()
    exercise_taste_pivot = exercise_taste_analysis.groupBy("exercise_habits").pivot("preferred_taste").sum("count").fillna(0)
    exercise_taste_results = [row.asDict() for row in exercise_taste_pivot.collect()]
    sleep_taste_analysis = cleaned_df.groupBy("sleep_cycle", "preferred_taste").count()
    sleep_taste_pivot = sleep_taste_analysis.groupBy("sleep_cycle").pivot("preferred_taste").sum("count").fillna(0)
    sleep_taste_results = [row.asDict() for row in sleep_taste_pivot.collect()]
    taste_avg_age = cleaned_df.groupBy("preferred_taste").agg(avg("age").alias("avg_age")).orderBy(desc("avg_age"))
    avg_age_results = [{"taste": row["preferred_taste"], "average_age": round(row["avg_age"], 2)} 
                       for row in taste_avg_age.collect()]
    lifestyle_correlation_results = {
        "age_group_taste_preferences": age_taste_results,
        "exercise_habits_taste_preferences": exercise_taste_results,
        "sleep_cycle_taste_preferences": sleep_taste_results,
        "taste_average_age_comparison": avg_age_results
    }
    return JsonResponse(lifestyle_correlation_results)
def geographic_cultural_taste_analysis(request):
    df = spark.read.csv("data/FlavorSense.csv", header=True, inferSchema=True)
    cleaned_df = df.filter(col("preferred_taste").isNotNull() & col("climate_zone").isNotNull() & 
                          col("historical_cuisine_exposure").isNotNull())
    climate_taste_analysis = cleaned_df.groupBy("climate_zone", "preferred_taste").count()
    climate_taste_pivot = climate_taste_analysis.groupBy("climate_zone").pivot("preferred_taste").sum("count").fillna(0)
    climate_taste_results = [row.asDict() for row in climate_taste_pivot.collect()]
    cuisine_taste_analysis = cleaned_df.groupBy("historical_cuisine_exposure", "preferred_taste").count()
    cuisine_taste_pivot = cuisine_taste_analysis.groupBy("historical_cuisine_exposure").pivot("preferred_taste").sum("count").fillna(0)
    cuisine_taste_results = [row.asDict() for row in cuisine_taste_pivot.collect()]
    climate_cuisine_analysis = cleaned_df.groupBy("climate_zone", "historical_cuisine_exposure").count().orderBy("climate_zone", desc("count"))
    climate_cuisine_results = [{"climate_zone": row["climate_zone"], "cuisine_exposure": row["historical_cuisine_exposure"], "count": row["count"]} 
                               for row in climate_cuisine_analysis.collect()]
    climate_diversity = cleaned_df.groupBy("climate_zone").agg(
        count("preferred_taste").alias("total_users"),
        col("preferred_taste").alias("taste_variety")
    )
    taste_diversity_per_climate = cleaned_df.groupBy("climate_zone", "preferred_taste").count()
    climate_taste_variety = taste_diversity_per_climate.groupBy("climate_zone").count().withColumnRenamed("count", "taste_variety_count")
    climate_diversity_results = [{"climate_zone": row["climate_zone"], "taste_variety": row["taste_variety_count"]} 
                                for row in climate_taste_variety.collect()]
    geographic_cultural_results = {
        "climate_zone_taste_preferences": climate_taste_results,
        "cuisine_background_taste_preferences": cuisine_taste_results,
        "climate_dominant_cuisine_analysis": climate_cuisine_results,
        "climate_taste_diversity_analysis": climate_diversity_results
    }
    return JsonResponse(geographic_cultural_results)

六、项目文档展示

在这里插入图片描述

七、项目总结

课题总结

本课题《基于大数据的食物口味差异分析与可视化系统》充分运用了Hadoop分布式存储和Spark大数据处理技术,构建了一套完整的食物口味差异数据分析平台。系统采用Python作为核心开发语言,通过Django框架搭建稳定的后端服务架构,结合Vue框架实现流畅的前端用户交互,并运用Echarts图表库完成直观的数据可视化展示。在功能设计上,系统围绕用户群体口味偏好宏观分析、个体生活习惯与口味关联分析、地理文化背景影响分析、多维度交叉因素探索以及用户聚类特征分析五大核心维度,深入挖掘年龄、运动习惯、睡眠周期、气候环境、文化背景等多重因素对食物口味偏好的影响规律。通过Spark的分布式计算能力,系统能够高效处理大规模用户特征数据,实现复杂的多维数据分析和统计建模。项目不仅为饮食行为学研究提供了技术工具和数据支撑,也为餐饮企业的市场分析和个性化推荐提供了实践参考。从技术实现角度来看,本系统综合运用了当前主流的大数据处理技术栈,为计算机专业学生提供了较为完整的大数据项目开发经验,有助于提升对分布式计算、数据挖掘、Web开发等技术的综合应用能力。

大家可以帮忙点赞、收藏、关注、评论啦 👇🏻

💖🔥作者主页计算机毕设木哥🔥 💖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值