Life Long Learning
对比人类从生到死都只用一个脑子学习,而机器每做一个任务就要换一个模型。那为什么机器不像人一样,也只用一个神经网络做所有事呢?
这就是Life Long Learning(LLL)。我们希望机器学会了一个技能之后就永远记得这项技能。
对此,我们需要解决三个问题:
- 让机器永远记得学过的知识,也要能学会新的东西。
举例而言:在图像识别中,先学任务1再学任务2会发现机器把任务1基本都忘了。
但如果两个任务一起学,发现机器表现反而不错。这说明机器不是学不会,就是忘了!
文字处理也是这样。学完题型之后立即做题正确率很高,但一学其他的题型后这题就不会了。
问题是,如果机器同时学所有题型时,机器是可以同时学会的。
这叫Catastrophic Forgetting。
解决方法:EWC
由于存储有限,我们不能将所有任务放在一起学习,并且这在时间上也是无法接受的。(这要求每多一个任务就学习一次)
有一种解决方法叫做Elastic Weight Consolidation (EWC)。
基本思想是,让机器学完过去的任务后,保留“重要的参数”,只调“不那么重要的参数”。其重要程度用“守卫”bib_i