李宏毅机器学习(30)

本文详细介绍了Q-Learning的基本概念,包括Critic的评价方法、Q-learning的算法执行过程,以及一系列优化技巧,如Target Network、Exploration、Replay Buffer、Double DQN、Dueling DQN等。此外,还探讨了在连续动作空间中的Q-learning策略,如Actor+Critic方法和Pathwise derivative policy gradient。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q-Learing

Critic

相比于Policy,Critics的评价方法很不一样:他有一个状态评价函数VπV^πVπ,输入是Environment的一个状态State,然后根据Actor也就是πππ的情况,输出从当前这个状态开始到结束,一共能获得多少期望的Reward,记为Vπ(s)V^π(s)Vπ(s)
比如打砖块时,VπV^πVπ会输出从现在到结束大概能得多少分。
比如下围棋,VπV^πVπ会输出现在的局势下双方胜率是多少。
在这里插入图片描述
在这里插入图片描述

那么,如何做这个VπV^πVπ呢?一般有两种办法。

第一种,蒙特卡洛法。先观察πππ玩很多次游戏。然后看到一个state后将结果尽量向某一局游戏结果贴合。
在这里插入图片描述
第二种,时序查分算法。我们只需要知道从状态sas_asa到状态sbs_bsb需要做Actionaaa,获得Rewardrr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值