Q-Learing
Critic
相比于Policy,Critics的评价方法很不一样:他有一个状态评价函数VπV^πVπ,输入是Environment的一个状态State,然后根据Actor也就是πππ的情况,输出从当前这个状态开始到结束,一共能获得多少期望的Reward,记为Vπ(s)V^π(s)Vπ(s)。
比如打砖块时,VπV^πVπ会输出从现在到结束大概能得多少分。
比如下围棋,VπV^πVπ会输出现在的局势下双方胜率是多少。
那么,如何做这个VπV^πVπ呢?一般有两种办法。
第一种,蒙特卡洛法。先观察πππ玩很多次游戏。然后看到一个state后将结果尽量向某一局游戏结果贴合。
第二种,时序查分算法。我们只需要知道从状态sas_asa到状态sbs_bsb需要做Actionaaa,获得Rewardrr