Dubbo高可用_3

1zookeeper宕机与dubbo直连

现象:zookeeper注册中心宕机,还可以消费dubbo暴露的服务。

原因:

健壮性

监控中心宕掉不影响使用,只是丢失部分采样数据

数据库宕掉后,注册中心仍能通过缓存提供服务列表查询,但不能注册新服务

注册中心对等集群,任意一台宕掉后,将自动切换到另一台

注册中心全部宕掉后,服务提供者和服务消费者仍能通过本地缓存通讯

服务提供者无状态,任意一台宕掉后,不影响使用

服务提供者全部宕掉后,服务消费者应用将无法使用,并无限次重连等待服务提供者恢复

高可用:通过设计,减少系统不能提供服务的时间;

案例 :① 比如zookeeper注册中心宕机了,消费者以上面的红色部分连接到消费者的服务,因为有缓存,

             ② zookeeper宕机了(我是将zookeeper服务停掉了),还可以通过dubbo直连的方式绕过注册中心找到提供者

@Service
public class OrderServiceImpl implements OrderService{
	
//	@Autowired
	@Reference(url="127.0.0.1:20882")
	UserService userService;
	public List<UserAddress> initOrder(String userId){
		List<UserAddress> addressList = userService.getUserAddressList(userId);
		System.out.println(addressList);
		return addressList;
	}
}

只需要在Reference 中加上提供者的地址,就可以找到消费者,实现了高可用

2、集群下dubbo负载均衡配置

在集群负载均衡时,Dubbo 提供了多种均衡策略,缺省为 random 随机调用

<dubbo:consumer loadbalance="random"/>

1.Random:安权重随机

2.RoundRobin: 轮询

3.LeastActive :最少活跃数(正在处理的数)慢的机器,收到的请求少

负载均衡策略

①Random LoadBalance

随机,按权重设置随机概率。

在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

我们看到每台机器后面都设置了权重,总的权重就是350 ,1号机器占了2/7,2号占了4/7,3号占了1/7 ,大量的访问来了,就有对应概率的访问量到达每一台机器,每次请求随机到那一台机器是不确定的

RoundRobin LoadBalance

轮循,按公约后的权重设置轮循比率。

存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

           1)如果先不考虑后面设置的权重,只按照轮询的方式第一次访问到1号机器,第二次访问2号,第三次访问3号,依次循环

           2)如果考虑后面的权重,第一次访问1号,第二次访问2号,第三次访问2号,第一轮结束了,第二轮继续,第四次访问1号,第五次方位2号,第六次本应该方位3号,可以按照权重比,3号只会被访问一次,第一轮已经访问过一次,所以会这次来到2号,第7次还是访问2号。这就是基于权重的轮询

LeastActive LoadBalance

最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。

使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

orderService 会统计每台服务器上一次的时间,总会访问活动时间最小的机器访问

ConsistentHash LoadBalance

一致性 Hash,相同参数的请求总是发到同一提供者。

第一次id=1 访问到1号机器,id=2访问到2号,id=3访问到3号机器,因为参数一直没有变化过,无论多少次访问每次访问都会落到同一台机器上。

测试负载均衡机制实验

boot-user-service-provider 项目中需要修改2出代码

@Component
@Service
public class UserServiceImpl implements UserService {
	
	public List<UserAddress> getUserAddressList(String userId) {
       //只增加一行打印,用于控制台便于区分 分别 1 ,2 ,3
		System.out.println("UserService.....3...."); 
		UserAddress address1 = new UserAddress(1,"东长安街89号","1","王老师","13278977","1");
		UserAddress address2 = new UserAddress(2,"西长安街90号","1","李老师","13278988","1");
		return Arrays.asList(address1,address2);
	}

}

 MyDbubboConfig只修改protocolConfig() 方法中的端口号,分别是20880,20881,20882,分别对应上面的UserServiceImpl  打印的1,2,3 修改一次,启动一次


@Configuration
public class MyDubboConfig {
	
	/**
	 * <dubbo:application name="boot-user-service-provider">
	 * </dubbo:application>	
	 * 对应下面的代码
	 * @return
	 */
	@Bean
	public ApplicationConfig applicationConfig(){
		ApplicationConfig applicationConfig = new ApplicationConfig();
		applicationConfig.setName("boot-user-service-provider");
		return applicationConfig;	
	}
	
	/**
	 * <dubbo:registry protocol="zookeeper" address="10.5.96.48:2181">
	 * </dubbo:registry>
	 * @return
	 */
	@Bean
	public RegistryConfig registryConfig(){
		RegistryConfig registryConfig = new RegistryConfig();
		registryConfig.setProtocol("zookeeper");
		registryConfig.setAddress("10.5.96.48:2181");
		return registryConfig;
	}
	
	/**
	 * <!-- 3 指定通信规则  通信协议,通信端口-->
	<dubbo:protocol name="dubbo" port="20880"></dubbo:protocol>
	 * @return
	 */
	@Bean
	public ProtocolConfig protocolConfig(){
		ProtocolConfig protocolConfig = new ProtocolConfig();
		protocolConfig.setName("dubbo");
		protocolConfig.setPort(20882);
		return protocolConfig;
	}
	
	/**
	 * <dubbo:service interface="com.atguigu.gmail.service.UserService" 
	ref="userServiceImpl01" version="1.0.0">
	<dubbo:method name="getUserAddressList" timeout="3000"></dubbo:method>
	</dubbo:service>
	 */
	public ServiceConfig<UserService> userServiceConfig(UserService userService){
		ServiceConfig<UserService> serviceConfig = new ServiceConfig();
		serviceConfig.setInterface(UserService.class);
		serviceConfig.setRef(userService);
		serviceConfig.setVersion("1.0.0");
		
		//配置每一个method的信息
		MethodConfig methodConfig = new MethodConfig();
		methodConfig.setName("getUserAddressList");
		methodConfig.setTimeout(1000);
		
		//将method 的设置关联到service 配置中
		List<MethodConfig> methods = new ArrayList<>();
		methods.add(methodConfig);
		serviceConfig.setMethods(methods);
		return serviceConfig;
		
	}

}

 主启动类

@EnableDubbo(scanBasePackages="com.atguigu.gmail")
@SpringBootApplication
public class ProviderApp 
{
    public static void main( String[] args )
    {
        SpringApplication.run(ProviderApp.class, args);
    }
}

 System.out.println("UserService.....1...."); 对应 protocolConfig.setPort(20880);启动一次主启动类,一次类推,一共启动三次

可视化控制台可以看到有三个服务提供者

然后我们浏览器访问访问 http://localhost:8083/initOrder?uid=1 ,多次刷新,然后可以看到dubbo是随机访问每台服务提供者的

如果修改负载均衡的机制,具体的值可以参考http://dubbo.apache.org/zh-cn/docs/user/demos/loadbalance.html

@Service
public class OrderServiceImpl implements OrderService{
	//修改负载均衡的机制
	@Reference(loadbalance="roundrobin")
	UserService userService;

	public List<UserAddress> initOrder(String userId){
		
		List<UserAddress> addressList = userService.getUserAddressList(userId);
		System.out.println(addressList);
		return addressList;
	}
}

 如果是安全权重修改服务提供者的 在@Service中设置对应的权重,这样的是写死的方法

@Component
@Service(weight=100)//暴露服务
public class UserServiceImpl implements UserService {
	
	public List<UserAddress> getUserAddressList(String userId) {
		System.out.println("UserService.....3....");
		UserAddress address1 = new UserAddress(1,"东长安街89号","1","王老师","13278977","1");
		UserAddress address2 = new UserAddress(2,"西长安街90号","1","李老师","13278988","1");
		return Arrays.asList(address1,address2);
	}
}

利用可视化控制台,红色框中的按钮,就可以设置对应服务提供中的权重进行负载均衡按权重轮询了,还是访问上面的连接,然后看控制台的信息,可以区分访问了那台机器,可以通过权重调整机器被访问的次数。

3、整合hystrix服务熔断与降级处理

1、服务降级

什么是服务降级?

当服务器压力剧增的情况下,根据实际业务情况及流量,对一些服务和页面有策略的不处理或换种简单的方式处理,从而释放服务器资源以保证核心交易正常运作或高效运作。

可以通过服务降级功能临时屏蔽某个出错的非关键服务,并定义降级后的返回策略。

向注册中心写入动态配置覆盖规则:

RegistryFactory registryFactory = ExtensionLoader.getExtensionLoader(RegistryFactory.class).getAdaptiveExtension();
Registry registry = registryFactory.getRegistry(URL.valueOf("zookeeper://10.20.153.10:2181"));
registry.register(URL.valueOf("override://0.0.0.0/com.foo.BarService?category=configurators&dynamic=false&application=foo&mock=force:return+null"));

服务降级的两种方式

  1. mock=force:return+null 表示消费方对该服务的方法调用都直接返回 null 值,不发起远程调用。用来屏蔽不重要服务不可用时对调用方的影响。
  2. 还可以改为 mock=fail:return+null 表示消费方对该服务的方法调用在失败后,再返回 null 值,不抛异常。用来容忍不重要服务不稳定时对调用方的影响。

    第一种测试 

             我们值提供一个Provider 的启动类,OrderService 调用UerService ,

服务消费者只有一个,此时我们点击屏蔽,也是是第一种我们OrderService 就不会去远程调用服务直接反悔了null

浏览器访问http://localhost:8083/initOrder?uid=1 所有的控制台都不会有打印的信息,浏览器返回空白的页面

第一种测试 

     还是上面的截图,我们先回复,然后点击容错

OrderServiceImpl 我们设置超时时间1000ms

@Service
public class OrderServiceImpl implements OrderService{

	@Reference(loadbalance="roundrobin",timeout=1000)
	UserService userService;

	public List<UserAddress> initOrder(String userId){
		
		List<UserAddress> addressList = userService.getUserAddressList(userId);
		System.out.println(addressList);
		return addressList;
	}
}

UserServiceImpl 设置超时2000,让调用超时

@Component
@Service//暴露服务
public class UserServiceImpl implements UserService {
	
	public List<UserAddress> getUserAddressList(String userId) {
		UserAddress address1 = new UserAddress(1,"东长安街89号","1","王老师","13278977","1");
		UserAddress address2 = new UserAddress(2,"西长安街90号","1","李老师","13278988","1");
		try {
			Thread.sleep(2000);
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		return Arrays.asList(address1,address2);
	}
}

浏览器访问http://localhost:8083/initOrder?uid=1 所有的控制台都不会有打印的信息,浏览器返回空白的页面

如果要是不容错,访问超时页面会报错

 

2、集群容错

在集群调用失败时,Dubbo 提供了多种容错方案,缺省为 failover 重试。

集群容错模式

Failover Cluster

失败自动切换,当出现失败,重试其它服务器。通常用于读操作,但重试会带来更长延迟。可通过 retries="2" 来设置重试次数(不含第一次)。 如果一台机器服务坏了,会自动切换调用其他机器的服务

重试次数配置如下:<dubbo:service retries="2" />

或  <dubbo:reference retries="2" />

或   <dubbo:reference>

             <dubbo:method name="findFoo" retries="2" />

      </dubbo:reference>

Failfast Cluster 

          快速失败,只发起一次调用,失败立即报错。通常用于非幂等性的写操作,比如新增记录。

Failsafe Cluster

           失败安全,出现异常时,直接忽略。通常用于写入审计日志等操作。

Failback Cluster

          失败自动恢复,后台记录失败请求,定时重发。通常用于消息通知操作。

Forking Cluster

          并行调用多个服务器,只要一个成功即返回。通常用于实时性要求较高的读操作,但需要浪费更多服务资源。可通过 forks="2" 来设置最大并行数。

Broadcast Cluster

        广播调用所有提供者,逐个调用,任意一台报错则报错 [2]。通常用于通知所有提供者更新缓存或日志等本地资源信息。

集群模式配置

         按照以下示例在服务提供方和消费方配置集群模式

<dubbo:service cluster="failsafe" />

或   <dubbo:reference cluster="failsafe" />

3、整合hystrix

Hystrix 旨在通过控制那些访问远程系统、服务和第三方库的节点,从而对延迟和故障提供更强大的容错能力。Hystrix具备拥有回退机制和断路器功能的线程和信号隔离,请求缓存和请求打包,以及监控和配置等功能

1、配置spring-cloud-starter-netflix-hystrix

spring boot官方提供了对hystrix的集成,直接在服务提供者boot-user-service-provider项目的pom.xml里加入依赖:


		<dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
        </dependency>
	</dependencies>
<!-- 上面是依赖的最后的部分,前面的已经有了就不写了 --> 
<!-- 下面也是新增的配置-->
	<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>

	<dependencyManagement>
		<dependencies>
			<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-dependencies</artifactId>
				<version>Finchley.SR1</version>
				<type>pom</type>
				<scope>import</scope>
			</dependency>
		</dependencies>
	</dependencyManagement>

然后在服务提供者Application类上增加@EnableHystrix来启用hystrix starter:

@EnableDubbo(scanBasePackages="com.atguigu.gmail")
@SpringBootApplication
@EnableHystrix //开启服务容错
public class ProviderApp 
{

2、配置Provider端

在Dubbo的Provider上增加@HystrixCommand配置,这样子调用就会经过Hystrix代理。

@Service(version = "1.0.0")
public class HelloServiceImpl implements HelloService {
    @HystrixCommand(commandProperties = {
     @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold", value = "10"),
     @HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds", value = "2000") })
    @Override
    public String sayHello(String name) {
        // System.out.println("async provider received: " + name);
        // return "annotation: hello, " + name;
        throw new RuntimeException("Exception to show hystrix enabled.");
    }
}

3、配置Consumer端

对于Consumer端,则可以增加一层method调用,并在method上配置@HystrixCommand。当调用出错时,会走到fallbackMethod = "reliable"的调用里。

@Component
@Service//暴露服务
public class UserServiceImpl implements UserService {
	
	@HystrixCommand //这个方法被Hystrix 代理
	public List<UserAddress> getUserAddressList(String userId) {
		UserAddress address1 = new UserAddress(1,"东长安街89号","1","王老师","13278977","1");
		UserAddress address2 = new UserAddress(2,"西长安街90号","1","李老师","13278988","1");
		
		if(Math.random() > 0.5){
			throw new RuntimeException();
		}
		return Arrays.asList(address1,address2);
	}
}

服务消费方导入依赖pom.xml

<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>
				spring-cloud-starter-netflix-hystrix
			</artifactId>
		</dependency>
	</dependencies>
<!-- 上面是依赖的最后的部分,前面的已经有了就不写了 --> 
<!-- 下面也是新增的配置-->
	<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>

	<dependencyManagement>
		<dependencies>
			<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-dependencies</artifactId>
				<version>Finchley.SR1</version>
				<type>pom</type>
				<scope>import</scope>
			</dependency>
		</dependencies>
	</dependencyManagement>

服务方消费方开启服务容错

@EnableDubbo
@SpringBootApplication
@EnableHystrix //开启服务容错
public class ConsumerApp 

OrderServiceImpl

@Service
public class OrderServiceImpl implements OrderService{
	
//	@Autowired
	@Reference
	UserService userService;

	/**
	 * 一旦远程调用方法失败,调用hello方法
	 */
	@HystrixCommand(fallbackMethod="hello")
	public List<UserAddress> initOrder(String userId){
		List<UserAddress> addressList = userService.getUserAddressList(userId);
		System.out.println(addressList);
		return addressList;
	}
	
	//远程服务错误 回调hello方法返回数据
	public List<UserAddress> hello(String userId){
		return Arrays.asList(new UserAddress(10, "测试地址", "1", "测试", "测试", "Y"));
	}

}

启动服务提供者,启动服务消费者,浏览器多次访问http://localhost:8083/initOrder?uid=1 ,会有不同的结果!运行将可以自行查看。

4、Dubbo 声明式缓存

参数与返回值:key/value形式

<doubbo:reference interface="com.xxx.ProduceService" cache="lru"/>
<!--1 lru:基于最近最少使用原则删除多余缓存 -->
<!--2 threadlocal:当前线程缓存 -->

1 lru:基于最近最少使用原则删除多余缓存 
2 threadlocal:当前线程缓存   只把缓存 放在客户端请求的缓存中

5、Dubbo 异步调用(待完善)**********

<dubbo:reference id="orderService" interface="com.xxx.OrderService">
     <dubbo:method name="submit" async="true" />
     <dubbo:method name="cancle" async="true" />
</dubbo:reference>

并发请求多个服务 submit和cancel 是两个异步调用的方式,官方不建议这么使用异步调用

6、Dubbo 事件通知(回调)

<dubbo:method name="xxx" async="true" onreturn="callBack.onOrderSubmit"/>

注册到ioc容器中 

<bean id="callBack" class="com.xxx.callback.CallBack"></bean>

异步回调类

/**
  * 回调方法类
  **/
public class CallBack{

   public void onOrderSubmit(OrderEntiry result,OrderEntiry form){
          System.out.println("生成了一单,金额" +result.getMoney());
   }

}

1.正常业务返回时,配置onreturn ,异常抛出时onthrow

7、Dubbo 回声测试  测试阶段用

8、泛化调用(应急的办法)

泛化--抽象

当项目A没有得到项目B接口描述,它还想要rpc调用它,有没有办法?

java反射:不知道对象B的class是什么,想要调用,用反射

<dubbo:reference id="otherService" interface="com.xxx.OtherService" generic="true"/>

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值