帮助到你了就点个赞吧!
Powered By Longer-站在巨人的肩膀上
对矩阵A进行SVD分解的公式:。其中A可以不是方阵,
是左奇异矩阵,
是右奇异矩阵。其中V是
的特征向量(注意公式中V有个转置操作),U是
的特征向量。
是对角阵,对角元素是U、V的共同特征值,例如有三个特征值时:
。
举个简单的例子,对矩阵A进行SVD分解:
从而得到的特征值和特征向量(
),右奇异矩阵
,
:
同时得到的特征值和特征向量(
),左奇异矩阵
:
因此奇异值:
所以对角阵
至此左奇异矩阵 ,右奇异矩阵
和对角阵
都凑齐了,
即为:
另外:生成多元具有相关性的随机变量时,也可以使用SVD分解法,详见:多元相关随机变量的生成。
帮助到你了就点个赞吧!
Powered By Longer-站在巨人的肩膀上