ceRNA机制研究常见套路

竞争性内源RNA(ceRNA)机制(Competitive endogenous RNA mechanism),与常说的非编码RNA(non-coding RNA,ncRNA)或mRNA等的概念不同,其不是某种特定类型的RNA,而是一种调控机制(图1)。百度百科中解释ceRNA机制揭示了一种RNA间相互作用的新机制,已知microRNA可以通过结合mRNA导致基因沉默,而ceRNA可以通过竞争性地结合microRNA来调节基因表达。ceRNA可以通过应答元件(microRNA response elements,MREs)与microRNA结合从而使microRNA失效,这揭示了一条RNA-microRNA调节通路的存在,具有重大生物意义。虽然该机制已经12岁了,但对于它的解释是不是读起来还是有种每个字拆开都认识,拼起来读又拗口又难以理解的感觉?别急,小医刚开始了解ceRNA机制的时候也是一脸懵的状态,但经过多篇文献的阅读,小医终于搞明白该机制的作用,并且发现研究ceRNA机制可谓是套路满满,并且依然是科学研究领域的热门呢!下面就和小医一起来学习一下吧。

图1 ceRNA概述(Wang et al., 2022)。

一、ceRNA机制的发现

哈佛大学医学院癌症遗传学家Pier Paolo Pandolfi教授于2011年在Cell上发表的A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?一文中首次提出了ceRNA机制假说(图2),但彼时教授并没有对其进行实验验证。该假说一经提出,就受到了多方关注,该文章也立即登上了Cell杂志最受关注的文章。

图2 颠覆microRNA-mRNA相互作用的传统逻辑(Salmena et al., 2011)。(A)mRNA和microRNA之间的关系可能是相互的,导致一种mRNA的水平影响另一种mRNA的水平和活性;(B)RNA分子可通过microRNA和MREs相互通信,共享的MREs越多,“沟通”水平越高;(C)RNA分子的3'UTR包含MRE,它可以顺式调节RNA分子本身,但也可能调节microRNA的水平,从而调节其他RNA分子。

同年的下半年,Pier Paolo Pandolfi教授在Cell上连续发表了题为“Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs”与“In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma”的文章,印证了ceRNA猜想,证实了ceRNA机制的存在,并在肿瘤中进行了验证(图3,图4)。首先,在第一篇文章中,作者在PTEN(一种关键的肿瘤抑制因子,其丰度决定了肿瘤发生的关键结果)背景下测试了ceRNA假设,通过结合计算和实验方法,确定并验证了调节PTEN、拮抗PI3K/AKT信号并具有生长和肿瘤抑制特性的内源性蛋白质编码转录物,提出了预测和验证ceRNA活性和网络的路线图,从而赋予蛋白质编码mRNA反式调节功能,证明了蛋白质编码RNA转录本可通过竞争常见的microRNA进行串扰,而microRNA反应元件是这种相互作用的基础(图3)。

图3 PTEN表达的调节模型,通过ceRNA隔离microRNA的转录后调控代表了PTEN调控的反式调控维度(Tay et al., 2011)。

接着,在第二篇文章中,作者在黑色素瘤小鼠模型中,发现了肿瘤抑制基因PTEN的多个ceRNA,并进一步表征了ZEB2转录本,通过体外表征验证了EMT调节剂ZEB2作为PTEN ceRNA以microRNA依赖、蛋白质编码独立的方式调节PTEN蛋白质水平,同时,人类癌症数据库分析证实了其与PTEN的功能关系,即ceRNA通过miRNA竞争对PTEN的异常调节有助于黑色素瘤的发展(图4)。

图4 诱变筛选鉴定肿瘤抑制性PTEN ceRNA机制概要(Karreth et al., 2011)。

不仅如此,Cell同期杂志上还刊登了罗马第一大学Irene Bozzoni教授的“A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA”文章,也证实了ceRNA机制的存在,在肌肉分化中起着重要作用,确定了一种肌肉特异性长链非编码RNA linc-MD1可通过在小鼠和人类成肌细胞中充当ceRNA来调控肌肉分化的时间。具体而言,linc-MD1的下调或过表达分别与肌肉分化程序的延迟或预测相关,linc-MD1“海绵”miR-133和miR-135以调节MAML1和MEF2C的表达,这是激活肌肉特异性基因表达的转录因子(图5)。

图5 连接linc-MD1,miR-135,miR-133和肌肉分化的通路示意图(Cesana et al., 2011)。

二、ceRNA机制的研究进展

研究发现mRNA、假基因、lncRNA、circRNA、miRNA等各种类型的RNA均可通过ceRNA机制来进行相互交流,从而调控各种微生物、病毒及动植物生命进程与疾病进展(图6)。

图6 不同类型的ceRNA和miRNA之间的相互作用(Abdollahzadeh et al., 2019)。

小医在pubmed简单检索ceRNA,2011-至今的结果就有6544条,而近3年来发表的文献高达4500+篇,且该趋势还在逐年上升。之后,小医又以ceRNA为关键词,在国家自然科学基金项目中通过查询发现,截至2022年,医学科学部国自然基金项目资助278个,项目资助金额高达11000多万。

▲ ceRNA机制文献发表情况

▲ ceRNA国自然基金项目资助情况

最后,小医又在pubmed中对ceRNA机制研究方向进行初筛,结果发现,lncRNA与circRNA参与ceRNA机制调控的研究占了ceRNA的大半壁江山,并且该机制曾一度风靡肿瘤研究领域,现如今,该机制已在神经、肌肉、心血管、脂肪、造血、免疫系统等众多人类疾病中得以探索。

▲ ceRNA研究方向统计

三、ceRNA机制的研究套路

在确定想要研究的领域后,可通过以下手段对ceRNA机制进行研究。

1)RNA差异分析,一般采用全转录组测序、基因芯片、临床数据库检索等手段;

2)基因富集与PPI分析,初筛目标基因,判断研究价值(可选);

3)目标基因筛选,推荐优先确定目标miRNA(ceRNA机制的中心),建议进行细胞功能检测等预实验,确认研究价值;

4)生物信息学网站预测与目标基因互作的靶基因(包括lncRNA、circRNA、mRNA与假基因等)并通过相应实验(如:双荧光素酶实验)对其进行验证,即共表达分析;

5)选择趋势符合的基因(即表达量与miRNA趋势相反)构建ceRNA机制通路。

其实,针对ceRNA机制研究最主要、最核心的步骤就是:寻找差异基因——预测调控关系—共表达分析—建立调控通路。随着ceRNA机制研究的套路化,单纯的ceRNA机制也越来越难发高分文章,但如果大家认为单纯的ceRNA研究已经out了,那就太小看这个机制了,最近小医就发现了几篇以ceRNA机制研究套路为基础的高分文献。

例子一

2023年3月20日,中国农业科学院动物研究所张丽团队在Cells上发表了题为“The Molecular Mechanism of the TEAD1 Gene and miR-410-5p Affect Embryonic Skeletal Muscle Development: A miRNA-Mediated ceRNA Network Analysis”的研究性文章。在本研究中,团队证明了miR-410-5p与TEAD1基因的调控关系,与绵羊胚胎成肌细胞的增殖有关,为理解胚胎肌肉发育的分子机制提供了参考和分子基础(图7)。详细而言,团队首先采用全转录组分析发现了一个共表达网络,即三个miRNA(miR-493-3p、miR-3959-3p和miR-410-5p)、三个lncRNA(MSTRG.3533、MSTRG.4324和MSTRG.1470)以及三个基因(TEAD1、ZBTB34和POGLUT1),随后通过分子实验与细胞功能验证相关实验对差异表达的miRNA(differentially expressed miRNAs,DE-miRNAs)靶基因进行分析,发现miR-410-5p与TEAD1基因具有显著的靶向调控关系。

图7 通过miRNA介导的ceRNA机制网络分析TEAD1基因与miR-410-5p影响胚胎骨骼肌发育的分子机制(Hu et al., 2023)。

本研究技术路线如图8所示。

图8 研究技术路线

例子二

2023年3月30日,昆明医科大学第二附属医院舒钧教授在Frontiers in Molecular Neuroscience上发表了题为“Construction of ceRNA and m6A-related lncRNA networks associated with anti-inflammation of AdipoAI”的研究性文章。本研究通过比较不对称和对称椎间盘退变的全转录组测序和生物信息学分析,系统地筛选了成人退行性脊柱侧弯(Adult degenerative scoliosis,ADS)发展中的关键ncRNA,鉴定了多个在ADS发病机制中发挥关键调控作用的ncRNA,包括miRNA-766-3p、miRNA-326、novel_circ_0004327、XLOC_000209、GRK2,这些发现为进一步研究与ADS发展相关的非编码RNA奠定了基础(图9)。

图9 不对称椎间盘退变引起的 ADS 相关的关键通路和分子机制(Shi et al., 2023)。

图10 本研究工作流程示意图(Shi et al., 2023)。

参考文献

Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol. 2019;234(7):10080-10100.

Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA [published correction appears in Cell. Cell. 2011;147(2):358-369.

Hu W, Wang X, Bi Y, Bao J, Shang M, Zhang L. The Molecular Mechanism of the TEAD1 Gene and miR-410-5p Affect Embryonic Skeletal Muscle Development: A miRNA-Mediated ceRNA Network Analysis. Cells. 2023;12(6):943.

Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma [published correction appears in Cell. Cell. 2011;147(2):382-395.

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353-358.

Shi X, Li P, Wu X, Shu J. Whole-transcriptome sequencing identifies key differentially expressed circRNAs/lncRNAs/miRNAs/mRNAs and linked ceRNA networks in adult degenerative scoliosis. Front Mol Neurosci. 2023;16:1038816.

Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147(2):344-357.

Wang Y, Mo Y, Peng M, et al. The influence of circular RNAs on autophagy and disease progression. Autophagy. 2022;18(2):240-253.

<think>好的,用户想了解ceRNA相关网络的构建方法和生物信息学中的实现手段。首先我需要回忆一下ceRNA的基本概念,竞争性内源RNA通过共享miRNA来相互调控,这种机制涉及到lncRNA、circRNA等非编码RNA与mRNA之间的相互作用。 接下来,构建ceRNA网络通常包括几个步骤:数据获取、差异表达分析、miRNA预测、网络构建及可视化。用户提到的参考引用中有TCGA数据库和RMBase的信息,可能需要整合这些数据源。例如,使用TCGA获取表达数据,然后通过差异分析筛选出关键RNA分子,再利用数据库如TargetScan或miRBase预测miRNA与RNA的相互作用,最后用Cytoscape或R中的igraph、ggraph进行网络构建。 用户提供的引用[4]提到WGCNA方法,这可能用于识别共表达模块,帮助筛选相关性高的基因。此外,引用[5]中的代码示例展示了如何使用R的igraph和ggraph包添加节点和边,并绘制网络图,这对实现部分很有参考价值。 需要注意的是,数据预处理步骤可能包括标准化、去除批次效应等,确保分析结果的准确性。同时,功能富集分析可以验证网络模块的生物学意义,比如GO或KEGG分析。可能还需要考虑如何验证网络中的关键分子,比如生存分析或实验验证。 用户可能还关心具体的工具和流程,比如使用哪些软件包,如何编写代码处理数据。例如,差异分析可用DESeq2或edgeR,网络分析用Cytoscape,而可视化可能需要ggplot2或ggraph。此外,引用[3]中的培训方向提到了ceRNA网络构建分析,可能涉及更详细的步骤和案例分析。 最后,要确保回答结构清晰,分步骤说明,并引用相关文献或数据库支持每一步的方法,比如TCGA数据来源[^2],WGCNA方法[^4],以及可视化工具[^5]。同时,生成的相关问题需要涵盖数据分析工具、验证方法、挑战和应用等方面,帮助用户全面理解。</think>### ceRNA网络构建方法与生物信息学实现 #### 1. **基础概念** ceRNA(竞争性内源RNA)通过共享miRNA结合位点形成调控网络,例如lncRNA、circRNA与mRNA通过吸附相同miRNA相互调控[^1]。网络构建的核心是识别具有共表达模式且共享miRNA的RNA分子。 #### 2. **核心步骤与工具** ##### **步骤1:数据获取与预处理** - **数据来源**: - TCGA、GEO数据库获取RNA表达谱(mRNA、lncRNA、circRNA等) - miRNA靶向预测数据库(TargetScan、miRBase、StarBase)[^1] - **预处理**: - 标准化表达数据(如TPM/FPKM) - 差异表达分析(DESeq2/edgeR筛选显著差异RNA) ##### **步骤2:miRNA-RNA互作预测** - 使用工具(如miRanda、RNAhybrid)预测RNA与miRNA的结合位点 - 整合实验验证的互作数据(CLIP-seq、PAR-CLIP)提高准确性[^1] ##### **步骤3:共表达网络构建** - **方法1:相关性分析** - 计算RNA间表达相关性(Pearson/Spearman系数) - 筛选显著正相关的RNA对(如$|r| > 0.6$, $p < 0.05$) - **方法2:WGCNA** - 加权基因共表达网络分析,识别协同表达模块 - 示例代码: ```R # WGCNA包构建网络 network = blockwiseModules(exprData, power = 6, TOMType = "unsigned") ``` ##### **步骤4:ceRNA网络整合** - 结合miRNA-RNA互作与共表达关系: 若RNA_A与RNA_B共表达,且共享至少1个miRNA,则建立ceRNA互作边 - 输出格式:节点(RNA)、边(共享miRNA数量或相关性强度) ##### **步骤5:网络可视化与分析** - **工具**:Cytoscape(交互式可视化)、R语言(ggraph/igraph) - 示例代码(R/ggraph): ```R library(igraph) library(ggraph) # 创建网络 network <- graph_from_data_frame(edges, directed = FALSE) # 绘制网络 ggraph(network, layout = "fr") + geom_edge_link(alpha = 0.5) + geom_node_point(size = 3, color = "blue") + theme_graph() ``` #### 3. **关键验证与功能分析** - **核心基因筛选**:计算节点中心性(度、介数、接近度) - **功能富集分析**:对网络模块进行GO/KEGG富集(clusterProfiler包) - **实验验证**:qPCR验证关键RNA表达,荧光素酶报告基因验证miRNA结合 #### 4. **挑战与优化** - **假阳性控制**:结合多数据库互作数据,严格设定阈值 - **动态网络构建**:单细胞测序数据解析细胞类型特异性网络 - **工具整合**:使用流程化工具(GDCRNATools、CEMiTool)简化分析[^3] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值