为什么L1和L2正则化可防止过拟合

正则化可降低模型复杂性,避免过拟合。线性模型处理回归和分类任务时,常用L1和L2正则化。文章从梯度、优化、先验概率等多个角度进行分析,重点介绍了梯度角度下,L1正则化易使参数为0实现特征稀疏化,L2正则化使参数减小但不为0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正则化通过降低模型的复杂性, 达到避免过拟合的问题。

线性模型常用来处理回归和分类任务,为了防止模型处于过拟合状态,需要用L1正则化和L2正则化降低模型的复杂度,很多线性回归模型正则化的文章会提到L1是通过稀疏化参数来降低复杂度,L2是通过减小参数值的大小来降低复杂度。

文章的内容总结了网上各种版本的解释:
1、梯度角度分析
2、优化角度分析
3、先验概率角度分析
4、知乎点赞最多的图形角度分析
5、限制条件角度分析
6、PRML的图形角度分析

1. 梯度角度分析

1)L1正则化

L1正则化的损失函数为:
在这里插入图片描述
上式可知,当w大于0时,更新的参数w变小;当w小于0时,更新的参数w变大;所以,L1正则化容易使参数变为0,即特征稀疏化。

2)L2正则化

L2正则化的损失函数为:
在这里插入图片描述
由上式可知,正则化的更新参数相比于未含正则项的更新参数多了
在这里插入图片描述
项,当w趋向于0时,参数减小的非常缓慢,因此L2正则化使参数减小到很小的范围,但不为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值