图像预处理

该代码段展示了如何使用C++和OpenCV库加载图像并进行通道转换,从HWC格式转换到CHW格式,适用于深度学习模型输入。首先,它通过调整图像尺寸和归一化处理来准备图像,然后执行HWCTOCHW转换,将图像数据存储在一个连续的浮点数向量中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、C++实现图像的加载及其通道转换

通道转换:从 HWC 转换到 CHW。

// 传入一个图像容器中的所有图像,并将每一个图像的通道进行转换。
std::vector<float> YOLOv4::prepareImage(std::vector<cv::Mat> &vec_img) {
    std::vector<float> result(BATCH_SIZE * IMAGE_WIDTH * IMAGE_HEIGHT * INPUT_CHANNEL);
    float *data = result.data();
    int index = 0;
    for (const cv::Mat &src_img : vec_img)
    {
        if (!src_img.data)
            continue;
        cv::Mat flt_img;
        if (letter_box) {
            float ratio = std::min(float(IMAGE_WIDTH) / float(src_img.cols), float(IMAGE_HEIGHT) / float(src_img.rows));
            flt_img = cv::Mat::zeros(cv::Size(IMAGE_WIDTH, IMAGE_HEIGHT), CV_8UC3);
            cv::Mat rsz_img;
            cv::resize(src_img, rsz_img, cv::Size(), ratio, ratio);
            rsz_img.copyTo(flt_img(cv::Rect(0, 0, rsz_img.cols, rsz_img.rows)));
            flt_img.convertTo(flt_img, CV_32FC3, 1.0 / 255);
        } else {
            cv::resize(src_img, flt_img, cv::Size(IMAGE_WIDTH, IMAGE_HEIGHT));
            flt_img.convertTo(flt_img, CV_32FC3, 1.0 / 255);
        }

        //HWC TO CHW
        int channelLength = IMAGE_WIDTH * IMAGE_HEIGHT;
        std::vector<cv::Mat> split_img = {
                cv::Mat(IMAGE_WIDTH, IMAGE_HEIGHT, CV_32FC1, data + channelLength * (index + 2)),
                cv::Mat(IMAGE_WIDTH, IMAGE_HEIGHT, CV_32FC1, data + channelLength * (index + 1)),
                cv::Mat(IMAGE_WIDTH, IMAGE_HEIGHT, CV_32FC1, data + channelLength * index)
        };
        index += 3;
        cv::split(flt_img, split_img);
    }
    return result;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值