[算法日常] 矩阵快速幂

矩阵快速幂

矩阵:

一个矩阵 A A A,是由 n × m n\times m n×m 个数字组成, B B B m × p m\times p m×p 组成,详见下。
A = [ a 1 , 1 , a 1 , 2 , a 1 , 3 ⋯ a 1 , m a 2 , 1 , a 2 , 2 , a 2 , 3 ⋯ a 2 , m ⋅ ⋅ ⋅ a n , 1 , a n , 2 , a n , 3 ⋯ a n , m ] B = [ b 1 , 1 , b 1 , 2 , b 1 , 3 ⋯ b 1 , p b 2 , 1 , b 2 , 2 , b 2 , 3 ⋯ b 2 , p ⋅ ⋅ ⋅ b m , 1 , b m , 2 , b m , 3 ⋯ b m , p ] A=\begin{bmatrix}a_{1,1},a_{1,2},a_{1,3}\cdots a_{1,m} \\ a_{2,1},a_{2,2},a_{2,3}\cdots a_{2,m} \\ \cdot \\ \cdot \\ \cdot \\ a_{n,1},a_{n,2},a_{n,3}\cdots a_{n,m}\end{bmatrix} \\ \\ B=\begin{bmatrix}b_{1,1},b_{1,2},b_{1,3}\cdots b_{1,p} \\ b_{2,1},b_{2,2},b_{2,3}\cdots b_{2,p} \\ \cdot \\ \cdot \\ \cdot \\ b_{m,1},b_{m,2},b_{m,3}\cdots b_{m,p} \end{bmatrix} A= a1,1,a1,2,a1,3a1,ma2,1,a2,2,a2,3a2,man,1,an,2,an,3an,m B= b1,1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值