使用MultinomialNB分类器时报错解决方案

本文介绍了如何在使用MultinomialNB分类器时遇到负值数据引发的错误,并提供了通过MinMaxScaler归一化处理的解决方案。通过实例演示了如何预处理数据并确保模型适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

使用MultinomialNB分类器时报错
ValueError: Negative values in data passed to MultinomialNB (input X)

在这里插入图片描述

原因:

MultinomialNB要求训练集中不出现负值


解决方案:

将训练数据归一化,使用preprocessing.MinMaxScaler来处理。

MinMaxScaler默认范围为(0,1),可以通过MinMaxScaler(feature_range=(0,1))进行调节。
在这里插入图片描述

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
mnb.fit(X_train_scaled,y_train)
mnb.predict(X_test_scaled)

参考链接:https://stats.stackexchange.com/questions/169400/naive-bayes-questions-continus-data-negative-data-and-multinomialnb-in-scikit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值