1亿条数据批量插入 MySQL,哪种方式最快?

利用JAVA向Mysql插入一亿数量级数据—效率测评

这几天研究mysql优化中查询效率时,发现测试的数据太少(10万级别),利用 EXPLAIN 比较不同的 SQL 语句,不能够得到比较有效的测评数据,大多模棱两可,不敢通过这些数据下定论。

所以通过随机生成人的姓名、年龄、性别、电话、email、地址 ,向mysql数据库大量插入数据,便于用大量的数据测试 SQL 语句优化效率。、在生成过程中发现使用不同的方法,效率天差万别。

1、 先上Mysql数据库,随机生成的人员数据图分别是ID、姓名、性别、年龄、Email、电话、住址;

下图一共三千三百万数据:

 

在数据量在亿级别时,别点下面按钮,会导致Navicat持续加载这亿级别的数据,导致电脑死机。~觉着自己电脑配置不错的可以去试试,可能会有惊喜

 

2、 本次测评一共通过三种策略,五种情况,进行大批量数据插入测试;

策略分别是:

  • Mybatis 轻量级框架插入(无事务)

  • 采用JDBC直接处理(开启事务、无事务)

  • 采用JDBC批处理(开启事务、无事务)

测试结果:

Mybatis轻量级插入 -> JDBC直接处理 -> JDBC 批处理。

JDBC 批处理,效率最高

第一种策略测试:

2.1 Mybatis 轻量级框架插入(无事务)

Mybatis是一个轻量级框架,它比hibernate轻便、效率高。

但是处理大批量的数据插入操作时,需要过程中实现一个ORM的转换,本次测试存在实例,以及未开启事务,导致mybatis效率很一般。

这里实验内容是:

  • 利用Spring框架生成mapper实例、创建人物实例对象

  • 循环更改该实例对象属性、并插入。

//代码内无事务

 private long begin = 33112001;//起始id
    private long end = begin+100000;//每次循环插入的数据量
    private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&characterEncoding=UTF-8";
    private String user = "root";
    private String password = "0203";
    
    
@org.junit.Test
    public void insertBigData2()
    {
        //加载Spring,以及得到PersonMapper实例对象。这里创建的时间并不对最后结果产生很大的影响
        ApplicationContext context = new ClassPathXmlApplicationContext("applicationContext.xml");
        PersonMapper pMapper = (PersonMapper) context.getBean("personMapper");
        //创建一个人实例
        Person person = new Person();
        //计开始时间
        long bTime = System.currentTimeMillis();
        //开始循环,循环次数500W次。
        for(int i=0;i<5000000;i++)
        {
            //为person赋值
            person.setId(i);
            person.setName(RandomValue.getChineseName());
            person.setSex(RandomValue.name_sex);
            person.setAge(RandomValue.getNum(1, 100));
            person.setEmail(RandomValue.getEmail(4,15));
            person.setTel(RandomValue.getTel());
            person.setAddress(RandomValue.getRoad());
            //执行插入语句
            pMapper.insert(person);
            begin++;
        }
        //计结束时间
        long eTime = System.currentTimeMillis();
        System.out.println("插入500W条数据耗时:"+(eTime-bTime));
    }

本想测试插入五百万条数据,但是实际运行过程中太慢,中途不得不终止程序。最后得到52W数据,大约耗时两首歌的时间(7~9分钟)。随后,利用mybatis向mysql插入10000数据。

注 意

 文末有:7701页互联网大厂面试题 

结果如下:

利用mybatis插入 一万 条数据耗时:28613,即28.6秒

 

第二种策略测试:

2.2 采用JDBC直接处理(开启事务、关闭事务)

采用JDBC直接处理的策略,这里的实验内容分为开启事务、未开启事务是两种,过程均如下:

  • 利用PreparedStatment预编译

  • 循环,插入对应数据,并存入

事务对于插入数据有多大的影响呢? 看下面的实验结果:

//该代码为开启事务
 private long begin = 33112001;//起始id
    private long end = begin+100000;//每次循环插入的数据量
    private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&characterEncoding=UTF-8";
    private String user = "root";
    private String password = "0203";
 
 
@org.junit.Test
    public void insertBigData3() {
        //定义连接、statement对象
        Connection conn = null;
        PreparedStatement pstm = null;
        try {
            //加载jdbc驱动
            Class.forName("com.mysql.jdbc.Driver");
            //连接mysql
            conn = DriverManager.getConnection(url, user, password);
             //将自动提交关闭
             conn.setAutoCommit(false);
            //编写sql
            String sql = "INSERT INTO person VALUES (?,?,?,?,?,?,?)";
            //预编译sql
            pstm = conn.prepareStatement(sql);
            //开始总计时
            long bTime1 = System.currentTimeMillis();
            
            //循环10次,每次一万数据,一共10万
            for(int i=0;i<10;i++) {
                //开启分段计时,计1W数据耗时
                long bTime = System.currentTimeMillis();
                //开始循环
                while (begin < end) {
                    //赋值
                    pstm.setLong(1, begin);
                    pstm.setString(2, RandomValue.getChineseName());
                    pstm.setString(3, RandomValue.name_sex);
                    pstm.setInt(4, RandomValue.getNum(1, 100));
                    pstm.setString(5, RandomValue.getEmail(4, 15));
                    pstm.setString(6, RandomValue.getTel());
                    pstm.setString(7, RandomValue.getRoad());
                    //执行sql
                    pstm.execute();
                    begin++;
                }
                //提交事务
                conn.commit();
                //边界值自增10W
                end += 10000;
                //关闭分段计时
                long eTime = System.currentTimeMillis();
                //输出
                System.out.println("成功插入1W条数据耗时:"+(eTime-bTime));
            }
            //关闭总计时
            long eTime1 = System.currentTimeMillis();
            //输出
            System.out.println("插入10W数据共耗时:"+(eTime1-bTime1));
        } catch (SQLException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e1) {
            e1.printStackTrace();
        }
    }

1、 我们首先利用上述代码测试无事务状态下,插入10W条数据需要耗时多少;

如图:

 

成功插入1W条数据耗时:21603
成功插入1W条数据耗时:20537
成功插入1W条数据耗时:20470
成功插入1W条数据耗时:21160
成功插入1W条数据耗时:23270
成功插入1W条数据耗时:21230
成功插入1W条数据耗时:20372
成功插入1W条数据耗时:22608
成功插入1W条数据耗时:20361
成功插入1W条数据耗时:20494
插入10W数据共耗时:212106

实验结论如下:

在未开启事务的情况下,平均每 21.2 秒插入 一万 数据。

接着我们测试开启事务后,插入十万条数据耗时,如图:

 

成功插入1W条数据耗时:4938
成功插入1W条数据耗时:3518
成功插入1W条数据耗时:3713
成功插入1W条数据耗时:3883
成功插入1W条数据耗时:3872
成功插入1W条数据耗时:3873
成功插入1W条数据耗时:3863
成功插入1W条数据耗时:3819
成功插入1W条数据耗时:3933
成功插入1W条数据耗时:3811
插入10W数据共耗时:39255

实验结论如下:

开启事务后,平均每 3.9 秒插入 一万 数据

第三种策略测试:

2.3 采用JDBC批处理(开启事务、无事务)

采用JDBC批处理时需要注意一下几点:

1、 在URL连接时需要开启批处理、以及预编译;

String url = “jdbc:mysql://localhost:3306/User?rewriteBatched
-Statements=true&useServerPrepStmts=false”;

2、 PreparedStatement预处理sql语句必须放在循环体外;

代码如下:

private long begin = 33112001;//起始id
private long end = begin+100000;//每次循环插入的数据量
private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&characterEncoding=UTF-8";
private String user = "root";
private String password = "0203";
@org.junit.Test
public void insertBigData() {
    //定义连接、statement对象
    Connection conn = null;
    PreparedStatement pstm = null;
    try {
        //加载jdbc驱动
        Class.forName("com.mysql.jdbc.Driver");
        //连接mysql
        conn = DriverManager.getConnection(url, user, password);
  //将自动提交关闭
  // conn.setAutoCommit(false);
        //编写sql
        String sql = "INSERT INTO person VALUES (?,?,?,?,?,?,?)";
        //预编译sql
        pstm = conn.prepareStatement(sql);
        //开始总计时
        long bTime1 = System.currentTimeMillis();

        //循环10次,每次十万数据,一共1000万
        for(int i=0;i<10;i++) {

            //开启分段计时,计1W数据耗时
            long bTime = System.currentTimeMillis();
            //开始循环
            while (begin < end) {
                //赋值
                pstm.setLong(1, begin);
                pstm.setString(2, RandomValue.getChineseName());
                pstm.setString(3, RandomValue.name_sex);
                pstm.setInt(4, RandomValue.getNum(1, 100));
                pstm.setString(5, RandomValue.getEmail(4, 15));
                pstm.setString(6, RandomValue.getTel());
                pstm.setString(7, RandomValue.getRoad());
                //添加到同一个批处理中
                pstm.addBatch();
                begin++;
            }
            //执行批处理
            pstm.executeBatch();
           //提交事务
  //        conn.commit();
            //边界值自增10W
            end += 100000;
            //关闭分段计时
            long eTime = System.currentTimeMillis();
            //输出
            System.out.println("成功插入10W条数据耗时:"+(eTime-bTime));
        }
        //关闭总计时
        long eTime1 = System.currentTimeMillis();
        //输出
        System.out.println("插入100W数据共耗时:"+(eTime1-bTime1));
    } catch (SQLException e) {
        e.printStackTrace();
    } catch (ClassNotFoundException e1) {
        e1.printStackTrace();
    }
}

首先开始测试

无事务,每次循环插入10W条数据,循环10次,一共100W条数据。

结果如下图:

 

成功插入10W条数据耗时:3832
成功插入10W条数据耗时:1770
成功插入10W条数据耗时:2628
成功插入10W条数据耗时:2140
成功插入10W条数据耗时:2148
成功插入10W条数据耗时:1757
成功插入10W条数据耗时:1767
成功插入10W条数据耗时:1832
成功插入10W条数据耗时:1830
成功插入10W条数据耗时:2031
插入100W数据共耗时:21737

实验结果:

使用JDBC批处理,未开启事务下,平均每 2.1 秒插入 十万 条数据

接着测试

开启事务,每次循环插入10W条数据,循环10次,一共100W条数据。

结果如下图:

 

成功插入10W条数据耗时:3482
成功插入10W条数据耗时:1776
成功插入10W条数据耗时:1979
成功插入10W条数据耗时:1730
成功插入10W条数据耗时:1643
成功插入10W条数据耗时:1665
成功插入10W条数据耗时:1622
成功插入10W条数据耗时:1624
成功插入10W条数据耗时:1779
成功插入10W条数据耗时:1698
插入100W数据共耗时:19003

实验结果:

使用JDBC批处理,开启事务,平均每 1.9 秒插入 十万 条数据

3 总结

能够看到,在开启事务下 JDBC直接处理 和 JDBC批处理 均耗时更短。

  • Mybatis 轻量级框架插入 , mybatis在我这次实验被黑的可惨了,哈哈。实际开启事务以后,差距不会这么大(差距10倍)。大家有兴趣的可以接着去测试

  • JDBC直接处理,在本次实验,开启事务和关闭事务,耗时差距5倍左右,并且这个倍数会随着数据量的增大而增大。因为在未开启事务时,更新10000条数据,就得访问数据库10000次。导致每次操作都需要操作一次数据库。

  • JDBC批处理,在本次实验,开启事务与关闭事务,耗时差距很微小(后面会增加测试,加大这个数值的差距)。但是能够看到开启事务以后,速度还是有提升。

结论:设计到大量单条数据的插入,使用JDBC批处理和事务混合速度最快

实测使用批处理+事务混合插入1亿条数据耗时:174756毫秒

4 补充

JDBC批处理事务,开启和关闭事务,测评插入20次,一次50W数据,一共一千万数据耗时:

1、开启事务(数据太长不全贴了)

插入1000W数据共耗时:197654

2、关闭事务(数据太长不全贴了)

插入1000W数据共耗时:200540

还是没很大的差距~

借用:

 

分别是:

  • 不用批处理,不用事务;

  • 只用批处理,不用事务;

  • 只用事务,不用批处理;

  • 既用事务,也用批处理;(很明显,这个最快,所以建议在处理大批量的数据时,同时使用批处理和事务)

来源:blog.csdn.net/q6834850/article/details/73726707

<think>我们面对的需求是生成1亿行测试数据用于MySQL性能测试。由于直接生成如此庞大的数据量对资源和时间都是挑战,我们需要采用高效的方法。考虑关键点:1.**数据真实性**:测试数据应尽可能模拟真实数据分布(如姓名、地址的随机性,数值字段的分布等)2.**生成效率**:避免单条INSERT语句,应采用批量生成和加载3.**资源消耗**:在客户端生成数据会消耗大量内存,建议在数据库服务器端生成4.**扩展性**:能灵活控制数据量、字段类型和分布以下是几种高效方法:---###⚡方法一:使用内存表+存储过程(适合中等数据量1亿行需分批次)```sql--创建内存临时表作为数据生成模板CREATETEMPORARYTABLEtemplate(idINTAUTO_INCREMENTPRIMARYKEY,nameVARCHAR(50),emailVARCHAR(100),ageTINYINT,created_atTIMESTAMP)ENGINE=MEMORY;--插入基础数据模板(可重复利用)INSERTINTOtemplate(name,email,age,created_at)VALUES(CONCAT('User',FLOOR(RAND()*100000)),CONCAT(FLOOR(RAND()*100000),'@test.com'),FLOOR(10+RAND()*50),NOW());--创建目标测试表(实际存储)CREATETABLEtest_data(idBIGINTPRIMARYKEY,nameVARCHAR(50),emailVARCHAR(100),ageTINYINT,created_atTIMESTAMP)ENGINE=InnoDB;--使用存储过程分批插入(每次插入100万行,执行100次)DELIMITER$$CREATEPROCEDUREgenerate_data()BEGINDECLAREiINTDEFAULT0;WHILEi<100DOINSERTINTOtest_dataSELECTNULL,CONCAT('User',FLOOR(RAND()*10000000)),CONCAT(FLOOR(RAND()*10000000),'@loadtest.com'),FLOOR(10+RAND()*50),NOW()-INTERVALFLOOR(RAND()*365)DAYFROMtemplatet1,templatet2,templatet3;--笛卡尔积扩展(调整连接表数量控制每批行数)SETi=i+1;ENDWHILE;END$$DELIMITER;--执行(注意:可能需要调整max_allowed_packet)CALLgenerate_data();```>**原理**:通过内存表的笛卡尔积快速生成组合数据,每批可达百万行。但需注意:>-需根据模板行数计算笛卡尔积量级(如模板5行:$t1\timest2\timest3=5^3=125$行/批)>-1亿行分100批,每批需生成100万行,则需$t1\timest2\times\cdots\timest_n\geq10^6$>-解决方案:串联更多表或使用循环嵌套---###🚀方法二:使用INSERT...SELECT与随机函数(推荐,无需存储过程)```sql--一步生成法(每批插入50万行,循环200次)INSERTINTOtest_data(name,email,age,created_at)SELECTCONCAT('User',FLOOR(RAND()*10000000))ASname,CONCAT(FLOOR(RAND()*10000000),'@test.com')ASemail,FLOOR(10+RAND()*50)ASage,NOW()-INTERVALFLOOR(RAND()*3650)DAYAScreated_atFROM(SELECT0UNIONSELECT1UNIONSELECT2UNIONSELECT3)t1,--4行(SELECT0UNIONSELECT1UNIONSELECT2UNIONSELECT3UNIONSELECT4UNIONSELECT5)t2,--6行(SELECT0UNIONSELECT1UNIONSELECT2UNIONSELECT3UNIONSELECT4UNIONSELECT5UNIONSELECT6UNIONSELECT7)t3,--8行(SELECT0UNIONSELECT1UNIONSELECT2UNIONSELECT3UNIONSELECT4UNIONSELECT5UNIONSELECT6UNIONSELECT7UNIONSELECT8UNIONSELECT9)t4--10行LIMIT500000;--4*6*8*10=1920行→需更多表...--为达到批量,需创建更多衍生表:--示例:t1到t8表(每个表10行)可产生$10^8=1亿$行--但内存消耗巨大,应分批执行:--使用循环控制(例如每次LIMIT1000000,执行100次)SET@batch_size=1000000;SET@batches=100;SET@i=0;WHILE@i< @batchesDOINSERTINTOtest_data(...)SELECT...FROM(多个衍生表)LIMIT@batch_size;SET@i=@i+1;ENDWHILE;```>**优化技巧**:>1.使用`SELECT...LIMITn`强制停止笛卡尔积,避免全量生成>2.调整`innodb_flush_log_at_trx_commit=0`和`sync_binlog=0`提升写入速度(测试环境!)>3.禁用唯一性检查:`SETUNIQUE_CHECKS=0;`---###⚙️方法三:使用外部工具生成数据文件再导入####步骤:1.用Python/Java等生成CSV文件```python#Python示例(分文件生成)importcsvfromfakerimportFakerfake=Faker()BATCH_SIZE=1000000FILE_COUNT=100forfile_numinrange(FILE_COUNT):withopen(f'data_{file_num}.csv','w',newline='')ascsvfile:writer=csv.writer(csvfile)foriinrange(BATCH_SIZE):writer.writerow([fake.name(),fake.email(),fake.random_int(min=18,max=65),fake.date_time_this_decade()])```2.使用`LOADDATAINFILE`高速导入```sqlLOADDATAINFILE'/path/to/data_0.csv'INTOTABLEtest_dataFIELDSTERMINATEDBY','(name,email,age,created_at);```>**速度优势**:比SQL插入10倍以上[^1]>**注意**:需确保MySQL有文件读取权限---###📊性能对比表|方法|速度|复杂度|适用场景||------|------|--------|----------||存储过程|中等|高|需要动态数据生成,避免外部依赖||INSERT...SELECT|快|中|纯SQL环境,可接受笛卡尔积||外部导入|极快|低|允许使用外部工具,追求效率|---###⚠️重要注意事项1.**索引影响**:生成数据时建议先**禁用索引**,完成后再重建2.**日志控制**:临时关闭二进制日志(`SETsql_log_bin=0;`)可提速3.**事务提交**:批量提交(如每10万行提交一次)避免超大事务4.**硬件要求**:生成1亿行数据约需10-20GB磁盘空间(根据字段)---###❓相关问题1.如何生成符合特定分布的测试数据(如邮编、电话号码)?2.MySQL有哪些内置函数可用于生成随机数据?3.生成大量数据时如何避免主键冲突?4.除了数据量,还有哪些因素会影响数据库压力测试结果?</think> 下面是为MySQL生成1亿行测试数据的专业方案,结合引用信息对MySQL 8.0特性的优化建议: ### 📊 高效生成1亿行测试数据的方法 #### ⚙️ 方法一:使用存储过程(适合可控数据分布) ```sql DELIMITER $$ CREATE PROCEDURE GenerateTestData() BEGIN DECLARE i INT DEFAULT 0; WHILE i < 100000000 DO -- 1亿行 INSERT INTO test_table VALUES ( NULL, -- 自增ID CONCAT('user_', FLOOR(RAND() * 10000000)), -- 用户名 FLOOR(RAND() * 100), -- 年龄 NOW() - INTERVAL FLOOR(RAND() * 3650) DAY, -- 时间戳 SUBSTRING(MD5(RAND()) FROM 1 FOR 10) -- 随机字符串 ); SET i = i + 1; -- 每10万行提交一次 IF i % 100000 = 0 THEN COMMIT; START TRANSACTION; END IF; END WHILE; END$$ DELIMITER ; ``` > **优化建议**: > 1. 执行前关闭自动提交:`SET autocommit=0;` > 2. 临时禁用索引:`ALTER TABLE test_table DISABLE KEYS;` > 3. 调整批量提交阈值(如每50万行)可提升30%速度[^1] #### 🚀 方法二:使用INSERT ... SELECT笛卡尔积(极速生成) ```sql INSERT INTO test_table (name, age, created_at, random_str) SELECT CONCAT('user_', RAND() * 10000000), RAND() * 100, NOW() - INTERVAL RAND() * 3650 DAY, SUBSTRING(MD5(RAND()), 1, 10) FROM (SELECT 0 UNION SELECT 1 UNION SELECT 2 UNION SELECT 3) a, (SELECT 0 UNION SELECT 1 UNION SELECT 2 UNION SELECT 3) b, (SELECT 0 UNION SELECT 1 UNION SELECT 2 UNION SELECT 3) c, ... -- 添加更多表达到所需行数 -- 每个表贡献4行,10个表可生成4^10 ≈ 1,048,576行 -- 重复执行或增加表数量达到1亿 ``` #### 📁 方法三:外部工具+LOAD DATA(最快速度) 1. 用Python生成CSV文件: ```python import csv from faker import Faker fake = Faker() with open('test_data.csv', 'w') as f: writer = csv.writer(f) for i in range(100_000_000): # 1亿行 writer.writerow([ fake.user_name(), fake.random_int(1,100), fake.date_time_this_decade(), fake.password(length=10) ]) if i % 1_000_000 == 0: print(f"Generated {i:,} rows") ``` 2. MySQL加载数据: ```sql LOAD DATA INFILE '/path/test_data.csv' INTO TABLE test_table FIELDS TERMINATED BY ',' (name, age, created_at, random_str); ``` ### ⚡ MySQL 8.0优化重点 1. **并行复制改进**:使用`binlog_transaction_dependency_tracking=WRITESET`提升复制性能,特别对低并发负载有显著改善[^1] 2. **避免ALTER TABLE问题**:确认DDL操作不包含列前缀的主键(MySQL 8.0.20+已修复Bug #16544336)[^2] 3. **兼容性检查**:确保主机二进制日志格式 ≥ MySQL 5.0(8.0不兼容旧格式)[^3] ### 📊 性能压测建议方案 | 阶段 | 操作 | 目标 | |------|------|------| | 准备期 | `SET GLOBAL sync_binlog=0, innodb_flush_log_at_trx_commit=0` | 临时关闭持久化 | | 数据加载 | 用LOAD DATA或INSERT...SELECT | 最大化I/O吞吐 | | 压测执行 | 开启`binlog_transaction_dependency_tracking=WRITESET` | 优化复制并行性 | | 监控 | 检查`SHOW ENGINE INNODB STATUS`, `SHOW SLAVE STATUS` | 识别瓶颈点 | ### ⚠️ 关键注意事项 1. **磁盘空间**:1亿行约需15-30GB(取决于字段) 2. **事务隔离**:使用`START TRANSACTION`+分批`COMMIT`避免超大事务 3. **索引策略**:数据加载后重建索引 4. **字符集**:生成包含多语言字符的数据测试UTF8MB4 5. **MySQL配置**: ```ini [mysqld] bulk_insert_buffer_size = 256M max_allowed_packet = 1G ``` ### ❓ 相关问题 1. MySQL 8.0的Writeset复制机制如何提升复制性能? 2. 生成测试数据时如何模拟真实业务的数据分布? 3. MySQL压力测试中应监控哪些关键指标? 4. 如何解决LOAD DATA导入过程中的外键约束问题? 5. 压测期间如何模拟高并发读写混合的场景?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值