一、题目
二、解法
一开始想到了 b f s bfs bfs,但是数据范围太大,这里考虑后缀数组的解法。
假设我们选取到了 s [ l . . . r ] s[l...r] s[l...r],如何决策选 s [ l ] s[l] s[l]还是选 s [ r ] s[r] s[r]呢?可以比较后缀 l l l和前缀 r r r的字典序大小,这就可以用后缀数组优化。我们先建出 S # S ′ S\#S' S#S′(中间是特殊字符, S ′ S' S′是 S S S的翻转),那么后缀 l l l就对应 r a n k [ l ] rank[l] rank[l],前缀 r r r就对应 r a n k [ 2 ∗ ( n + 1 ) − r ] rank[2*(n+1)-r] rank[2∗(n+1)−r],直接比较 r a n k rank rank即可。
#include <cstdio>
#include <iostream>
using namespace std;
const int M = 100005;
int read()
{
int x=0,flag=1;
char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*flag;
}
int n,m,x[M],y[M],c[M],sa[M],rk[M],hi[M];
char s[M];
void get_sa()
{
for(int i=1;i<=n;i++) ++c[x[i]=s[i]];
for(int i=2;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i>=1;i--) sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int num=0;
for(int i=n-k+1;i<=n;i++) y[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) y[++num]=sa[i]-k;
for(int i=1;i<=m;i++) c[i]=0;
for(int i=1;i<=n;i++) ++c[x[i]];
for(int i=2;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i>=1;i--) sa[c[x[y[i]]]--]=y[i],y[i]=0;
swap(x,y);
x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(num==n) break;
m=num;
}
}
void get_hi()
{
int k=0;
for(int i=1;i<=n;i++) rk[sa[i]]=i;
for(int i=1;i<=n;i++)
{
if(rk[i]==1) continue;
if(k) k--;
int j=sa[rk[i]-1];
while(j+k<=n && i+k<=n && s[i+k]==s[j+k])
k++;
hi[rk[i]]=k;
}
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
scanf("%s",s+i);
s[n+1]='#';
for(int i=1;i<=n;i++)
s[2*(n+1)-i]=s[i];
n=2*n+1;m=122;
get_sa();
get_hi();
n=(n-1)/2;
int l=1,r=n,cnt=0;
while(l<=r)
{
if(rk[l]<rk[2*(n+1)-r])
putchar(s[l++]);
else
putchar(s[r--]);
cnt++;
if(cnt%80==0) puts("");
}
}