[USACO07DEC]Best Cow Line, Gold

本文介绍了一种使用后缀数组优化的算法解决特定字符串问题的方法。通过构建特殊字符串和运用后缀数组,算法能有效决策选择字符串左边界或右边界元素,以优化搜索过程。文章详细阐述了算法实现步骤,并提供了完整的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

点此看题

二、解法

一开始想到了 b f s bfs bfs,但是数据范围太大,这里考虑后缀数组的解法。

假设我们选取到了 s [ l . . . r ] s[l...r] s[l...r],如何决策选 s [ l ] s[l] s[l]还是选 s [ r ] s[r] s[r]呢?可以比较后缀 l l l和前缀 r r r的字典序大小,这就可以用后缀数组优化。我们先建出 S # S ′ S\#S' S#S(中间是特殊字符, S ′ S' S S S S的翻转),那么后缀 l l l就对应 r a n k [ l ] rank[l] rank[l],前缀 r r r就对应 r a n k [ 2 ∗ ( n + 1 ) − r ] rank[2*(n+1)-r] rank[2(n+1)r],直接比较 r a n k rank rank即可。

#include <cstdio>
#include <iostream>
using namespace std;
const int M = 100005;
int read()
{
    int x=0,flag=1;
    char c;
    while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
    while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
    return x*flag;
}
int n,m,x[M],y[M],c[M],sa[M],rk[M],hi[M];
char s[M];
void get_sa()
{
    for(int i=1;i<=n;i++) ++c[x[i]=s[i]];
    for(int i=2;i<=m;i++) c[i]+=c[i-1];
    for(int i=n;i>=1;i--) sa[c[x[i]]--]=i;
    for(int k=1;k<=n;k<<=1)
    {
        int num=0;
        for(int i=n-k+1;i<=n;i++) y[++num]=i;
        for(int i=1;i<=n;i++) if(sa[i]>k) y[++num]=sa[i]-k;
        for(int i=1;i<=m;i++) c[i]=0;
        for(int i=1;i<=n;i++) ++c[x[i]];
        for(int i=2;i<=m;i++) c[i]+=c[i-1];
        for(int i=n;i>=1;i--) sa[c[x[y[i]]]--]=y[i],y[i]=0;
        swap(x,y);
        x[sa[1]]=1;num=1;
        for(int i=2;i<=n;i++)
            x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
        if(num==n) break;
        m=num;
    }
}
void get_hi()
{
    int k=0;
    for(int i=1;i<=n;i++) rk[sa[i]]=i;
    for(int i=1;i<=n;i++)
    {
        if(rk[i]==1) continue;
        if(k) k--;
        int j=sa[rk[i]-1];
        while(j+k<=n && i+k<=n && s[i+k]==s[j+k])
            k++;
        hi[rk[i]]=k;
    }
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
        scanf("%s",s+i);
    s[n+1]='#';
    for(int i=1;i<=n;i++)
        s[2*(n+1)-i]=s[i];
    n=2*n+1;m=122;
    get_sa();
    get_hi();
    n=(n-1)/2;
    int l=1,r=n,cnt=0;
    while(l<=r)
    {
        if(rk[l]<rk[2*(n+1)-r])
            putchar(s[l++]);
        else
            putchar(s[r--]);
        cnt++;
        if(cnt%80==0) puts("");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值