pandas 分组 取最大值

这段代码创建了一个包含年龄和性别的DataFrame,然后按性别对年龄进行排名,找出每个性别中年龄最大的个体。接着,分别获取性别为1和0时的最大年龄及其对应的行数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import pandas as pd
import random
import sys
data = [[  random.randint(0,100), random.randint(0,1) ] for i in range(6)]

data =  pd.DataFrame(data,columns=['age','sex'],dtype=int)
print('line=',str(sys._getframe().f_lineno), '\n',data)

ss = data[data.groupby(['sex'])['age'].rank(method="first", ascending=False)==1]

print('line=',str(sys._getframe().f_lineno), '\n',ss)


sex1_maxid = data[ data['sex']==1 ].age.idxmax()
print('line=',str(sys._getframe().f_lineno), '\n',data.age[sex1_maxid])
print('line=',str(sys._getframe().f_lineno), '\n',data.iloc[sex1_maxid])

sex0_maxid = data[ data['sex']==0 ].age.idxmax()
print('line=',str(sys._getframe().f_lineno), '\n',data.age[sex0_maxid])

print('line=',str(sys._getframe().f_lineno), '\n',data.iloc[sex0_maxid])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值