ros opencv error cv_bridge exception

本文详细解析了在将ROS图像消息转换为OpenCV图像时遇到的cv_bridge异常问题,阐述了图像编码不一致导致的错误,并提供了正确的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 cv_bridge exception: [8UC3] and [32FC1] do not have the same number of channel 

 cv_bridge exception: [8UC3] and [32FC1] do not have the same number of channel

 

cv_bridge exception: [mono8] is a color format but [8UC3] is not so they must have the same OpenCV type, CV_8UC3, CV16UC1 ....
 

今天碰到这个错误。

    cv_bridge::CvImagePtr cv_ptr;
    cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::MONO8);

我的image callback:

  void imageCb(const sensor_msgs::ImageConstPtr& msg)
  {
    cv_bridge::CvImagePtr cv_ptr;
    printf("imag ge%d\n",__LINE__);                                               
    try
    {
      cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_8UC1);   
    printf("imag ge%d\n",__LINE__);                //convert ROS image to CV image and make copy of it storing in cv_ptr(a pointer)
    }
    catch (cv_bridge::Exception& e)
    {
      ROS_ERROR("cv_bridge exception: %s", e.what());
      return;
    }
}


 出现此类错误,是由于从ROS 图像转换为opencv可用的图像时,图像编码不一致导致。

改为

sensor_msgs::image_encodings::TYPE_8UC3

后,代码正常。

 

 

<think>我们正在处理用户的问题:将ROS1中使用的cv_bridge头文件迁移到ROS2中使用。 在ROS1中,我们通常这样包含cv_bridge头文件: #include <cv_bridge/cv_bridge.h> 在ROS2中,cv_bridge包已经更新,并且头文件的位置和用法有所变化。 根据ROS2的文档和迁移指南,我们需要做以下改变: 1. 在ROS2中,cv_bridge被包含在`cv_bridge`包中,但是头文件的路径发生了变化。 2. 在ROS2中,我们使用`cv_bridge`命名空间下的`CvImage`类,但是头文件的位置变为`cv_bridge/cv_bridge.hpp`。 具体迁移步骤: 步骤1:修改头文件包含 ROS1: #include <cv_bridge/cv_bridge.h> ROS2: #include <cv_bridge/cv_bridge.hpp> 步骤2:使用命名空间(注意:在ROS2中,cv_bridge的命名空间没有变化,仍然是`cv_bridge`) 但是,由于ROS2的cv_bridge是基于ROS2的消息系统,因此在使用时需要注意图像消息类型的变化(从sensor_msgs::Image到sensor_msgs::msg::Image)。 步骤3:修改代码中相关部分 例如,在ROS1中,我们可能这样使用: cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); 在ROS2中,基本用法相同,但是消息类型变为`sensor_msgs::msg::Image`,并且编码常量在`sensor_msgs/image_encodings.hpp`中。 因此,ROS2中的用法: #include <sensor_msgs/image_encodings.hpp> cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); 但是,注意:在ROS2中,`cv_bridge::toCvCopy`函数的第一个参数是`sensor_msgs::msg::Image::ConstSharedPtr`类型。 步骤4:修改package.xml和CMakeLists.txt 在package.xml中添加对cv_bridge的依赖: <depend>cv_bridge</depend> <depend>sensor_msgs</depend> <depend>std_msgs</depend> <!-- 如果需要的话 --> <depend>opencv</depend> <!-- 通常需要OpenCV --> 在CMakeLists.txt中,需要找到cv_bridgeOpenCV: find_package(cv_bridge REQUIRED) find_package(OpenCV REQUIRED) # 然后链接到你的可执行文件 target_link_libraries(your_executable ${cv_bridge_LIBRARIES} ${OpenCV_LIBRARIES}) 注意:在ROS2中,我们使用ament_cmake构建系统,所以还需要在find_package中添加ament_cmake_auto并导出依赖。 完整示例: 在ROS2节点代码中: ```cpp #include <cv_bridge/cv_bridge.hpp> // 新的头文件 #include <sensor_msgs/image_encodings.hpp> #include <sensor_msgs/msg/image.hpp> // ... 在回调函数中 void imageCallback(const sensor_msgs::msg::Image::ConstSharedPtr & msg) { try { cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); // 使用cv_ptr->image操作OpenCV图像 } catch (cv_bridge::Exception& e) { RCLCPP_ERROR(rclcpp::get_logger("rclcpp"), "cv_bridge exception: %s", e.what()); } } ``` 另外,ROS2的cv_bridge还提供了toCvShare等函数,用法与ROS1类似。 重要提示:ROS2的cv_bridge在二进制包中提供,可以通过apt安装(如:ros-<distro>-cv-bridge),也可以从源码构建。 总结迁移步骤: 1. 修改头文件路径:`cv_bridge/cv_bridge.h` -> `cv_bridge/cv_bridge.hpp` 2. 使用ROS2的消息类型(sensor_msgs::msg::Image) 3. 确保在package.xml和CMakeLists.txt中添加正确的依赖 4. 注意异常处理,因为cv_bridge可能抛出异常 注意:ROS2的cv_bridge需要OpenCV3OpenCV4,请确保系统中安装了正确版本的OpenCV。 最后,如果用户之前使用cv_bridgeOpenCV图像转换为ROS1消息,那么在ROS2中也是类似的,只是发布的消息类型变为`sensor_msgs::msg::Image`。 例如,发布图像: ```cpp cv_bridge::CvImage img_bridge; sensor_msgs::msg::Image img_msg; // 需要发布的消息 img_bridge = cv_bridge::CvImage(std_msgs::msg::Header(), "bgr8", cv_image); img_bridge.toImageMsg(img_msg); // 将img_bridge转换为img_msg // 然后发布 img_msg ``` 以上是迁移cv_bridge头文件和使用的主要步骤。 生成相关问题: 1. 在ROS2中,cv_bridgeOpenCV的版本兼容性如何? 2. 如何将ROS2中的图像消息转换为OpenCV Mat对象? 3. ROS2中cv_bridge的异常处理有哪些注意事项? 4. 在ROS2中,如何发布一个由OpenCV处理后的图像消息?</think>### ROS 1 到 ROS 2 的 cv_bridge 头文件迁移指南 在 ROS 1 到 ROS 2 的迁移过程中,`cv_bridge` 头文件的使用方式发生了显著变化。以下是关键迁移步骤和代码示例: #### 1. 头文件路径变化 **ROS 1 使用方式**: ```cpp #include <cv_bridge/cv_bridge.h> // 旧版头文件路径[^4] ``` **ROS 2 迁移方案**: ```cpp #include <cv_bridge/cv_bridge.hpp> // 新版头文件路径[^1][^3] ``` #### 2. 消息类型命名空间变化 **ROS 1 图像处理**: ```cpp cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy( msg, sensor_msgs::image_encodings::BGR8); ``` **ROS 2 迁移方案**: ```cpp // 使用 msg 命名空间和新的编码常量 cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy( msg, sensor_msgs::image_encodings::BGR8); ``` #### 3. 完整代码迁移示例 ```cpp // ROS 2 图像订阅与转换 #include <rclcpp/rclcpp.hpp> #include <sensor_msgs/msg/image.hpp> #include <cv_bridge/cv_bridge.hpp> // 正确的新头文件 #include <opencv2/opencv.hpp> class ImageProcessor : public rclcpp::Node { public: ImageProcessor() : Node("image_processor") { subscription_ = this->create_subscription<sensor_msgs::msg::Image>( "/camera/image_raw", 10, [this](const sensor_msgs::msg::Image::SharedPtr msg) { try { // 转换ROS图像为OpenCV格式 cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy( msg, sensor_msgs::image_encodings::BGR8); // 使用OpenCV处理图像 (示例:转换为灰度图) cv::Mat gray; cv::cvtColor(cv_ptr->image, gray, cv::COLOR_BGR2GRAY); // 转换回ROS消息并发布 auto gray_msg = cv_bridge::CvImage( msg->header, sensor_msgs::image_encodings::MONO8, gray).toImageMsg(); publisher_->publish(*gray_msg); } catch (cv_bridge::Exception& e) { RCLCPP_ERROR(this->get_logger(), "cv_bridge exception: %s", e.what()); } }); publisher_ = this->create_publisher<sensor_msgs::msg::Image>( "/image_gray", 10); } private: rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr subscription_; rclcpp::Publisher<sensor_msgs::msg::Image>::SharedPtr publisher_; }; ``` #### 4. 包依赖配置 (`package.xml`) ```xml <depend>rclcpp</depend> <depend>sensor_msgs</depend> <depend>cv_bridge</depend> <!-- 关键依赖 --> <depend>opencv</depend> <!-- OpenCV依赖 --> ``` #### 5. CMake 配置 (`CMakeLists.txt`) ```cmake find_package(ament_cmake REQUIRED) find_package(rclcpp REQUIRED) find_package(sensor_msgs REQUIRED) find_package(cv_bridge REQUIRED) # 关键配置 find_package(OpenCV REQUIRED) # OpenCV配置 add_executable(image_processor src/image_processor.cpp) target_link_libraries(image_processor ${rclcpp_LIBRARIES} ${sensor_msgs_LIBRARIES} ${cv_bridge_LIBRARIES} # 链接cv_bridge ${OpenCV_LIBS} # 链接OpenCV ) ``` #### 6. 关键差异总结 | **特性** | ROS 1 | ROS 2 | |------------------|---------------------------|--------------------------------| | 头文件路径 | `<cv_bridge/cv_bridge.h>` | `<cv_bridge/cv_bridge.hpp>` | | 消息类型 | `sensor_msgs::Image` | `sensor_msgs::msg::Image` | | 异常处理 | `cv_bridge::Exception` | 相同但需配合`RCLCPP_ERROR` | | 构建依赖 | `cv_bridge` | 相同但需显式链接 | | OpenCV 兼容性 | OpenCV 3/4 | OpenCV 4 推荐 | #### 7. 常见问题解决 1. **未找到头文件错误**: ```bash # 确保已安装ROS 2的cv_bridge sudo apt install ros-${ROS_DISTRO}-cv-bridge ``` 2. **OpenCV版本冲突**: ```cmake # 在CMakeLists.txt中指定OpenCV版本 find_package(OpenCV 4 REQUIRED COMPONENTS core imgproc) ``` 3. **编码常量变化**: ```cpp // 使用新版编码常量(ROS 2中保持不变) sensor_msgs::image_encodings::BGR8 sensor_msgs::image_encodings::MONO8 ``` > **迁移提示**:ROS 2 的 `cv_bridge` 核心功能与 ROS 1 保持一致,主要变化在于命名空间和构建系统的集成方式[^1][^3]。建议使用 ROS 2 Humble 或 Iron 版本,它们提供最稳定的 `cv_bridge` 实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值