裴蜀定理
一句话,ax+by的结果一定是 x,y最大公因数的倍数
对于给定的正整数a,b,方程的ax+by=c有解的充要条件为c是gcd(a,b)的整数倍
证明:
gcd(a,b)=d,于是a=k1×d,b=k2×d,c=k3×d,其中k1 k2互质
那么原等式等价于k1×d×x+k2×d×y=k3×d,也就是k1×x+k2×y=k3,其中k1 k2互质
那么这个方程等价于线性方程,k1×x≡k3 mod k2由exgcd可以知道,这个方程一定有解,那么这个方程的一组解就是原方程的解
给定序列a求序列b,使得a1×b1+a2×b2+…+an×bn最小
没什么难度,给定序列就是k1 k2 k3然后不断的求d(gcd)就好了
#include<iostream>
#include<cstdio>
using namespace std;
int n;
int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
int main()
{
cin>>n;
int ans=0;
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
x=abs(x);
if(x==0)
continue;
ans=gcd(x,ans);
}
cout<<ans<<endl;
return 0;
}