2017-2022年中国单季水稻(10米/20米)高分辨率分布图

该数据集包含2017年至2022年中国21省的中稻种植信息,使用哨兵卫星影像和TWDTW方法处理,分辨率从10米到20米不等,平均精度达85.23%,与官方统计有高相关性(R2=0.83)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本数据集为中国中稻种植数据集,包含了2017–2022年中国21个省级行政区的中稻种植图。数据文件格式为GeoTIFF,地理参考为WGS84(EPSG:4326)。种植图的分辨率在黑龙江、吉林、辽宁、内蒙古和宁夏为20米,其余省份的分辨率为10米。种植图是利用哨兵-1和哨兵-2影像,使用基于时间权重的动态时间规划法(TWDTW)制作的。基于108195个验证样本,21个省级行政区的种植图非平均总精度为85.23%。与县级统计数据相比,3年平均的R2为0.83。

分类系统:

0:非中稻

1:中稻

 

内容概要:本文介绍了一个基于MATLAB实现的RL-Transformer模型,将强化学习控制器(RL)与Transformer编码器相结合,用于多变量时间序列预测。项目通过构建完整的数据预处理、模型设计、训练与验证流程,利用Transformer的自注意力机制捕捉变量间的长距离依赖关系,并引入强化学习实现模型参数的动态调整,提升预测精度与鲁棒性。模型架构包含四个核心模块:数据预处理、Transformer编码器、强化学习控制器和预测输出模块,支持并行计算与自适应优化,有效应对复杂时序数据的非线性依赖、误差积累和环境变化等挑战。文中还提供了关键模块的MATLAB代码示例,包括多头注意力、前馈网络、层归一化及策略网络实现。; 适合人群:具备一定深度学习与强化学习基础,熟悉MATLAB编程环境,从事时间序列预测、智能控制、工业数据分析等相关领域的研究人员与工程师;适合高校研究生及企业研发人员; 使用场景及目标:①应用于金融、能源、交通、智能制造等领域的多变量时序预测任务;②实现模型自适应调节,提升长期预测稳定性;③探索深度强化学习与Transformer在时序建模中的融合方法; 阅读建议:建议结合MATLAB深度学习与强化学习工具箱进行代码复现,重点关注状态设计、奖励函数构建与模型联合训练策略,建议配合完整项目代码与GUI界面深入理解系统实现细节。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值