回归分析是科学研究特别是生态学领域科学研究和数据分析十分重要的统计工具,可以回答众多科学问题,如环境因素对物种、种群、群落及生态系统或气候变化的影响;物种属性和系统发育对物种分布(多度)的影响等。纵观涉及数量统计方法生态学论文中几乎都能看到回归分析的身影。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了主流发展方向,它不仅可以涵盖方差分析和协方差分析,同时也可以分析非正态响应变量(如0,1数据和计数数据)、数据分层、嵌套、时间自相关、空间自相关、系统发育相关导致的数据不独立情况以及数据间的非线性关系。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为稳定,特别适合应对科学数据结构复杂性和异质性的特点。
本课程包括复杂生态数据回归及混合效应模型概述;Rstudio和R入门、数据整理和绘图基础;回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);相关数据回归与混合效应模型包括时间自相关数据,空间自相数据及系统发育数据分析;非线性数据回归分析包括广义可加(混合)模型和非线性(混合)模型;回归与混合效应模型结果绘图。课程将通过大量实例讲解,使大家能应对科研工作中复杂生态数据局面,选择合适模型,提高数据分析能力。
第一单元:复杂生态数据回归/混合效应模型概述
1)生态学领域数据多样性和复杂性
2)回归分析历史、理论基础
3)回归和混合效应模型基本假设和常见问题
4)如何根据复杂生态数据选择合适的回归/混合效应模型形式