Leetcode:62题 不同路径(一个机器人位于一个 m x n 网格的左上角 。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角)

该博客介绍了LeetCode第62题的解决方案,讨论了一个机器人在m x n网格中从左上角到达右下角的不同路径数量。博主首先通过递归方法解释了基本思路,然后指出递归解法存在重复计算的问题,并通过二维数组存储已计算结果进行优化。最后,博主展示了非递归的循环实现方法,进一步优化了算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

用例:   3*2的方格  共3条路径;        7*3的方格   共28条路径。

思路:因为机器人每次只能向下或者向右移动一步,所以机器人在走到右下角那个格子之前,就必须走到蓝色或红色的这个方格里,那么总路径数就是机器人从起点到红色方格的路径总数加上机器人从起点到蓝色方格的路径总数,以此类推,就能求出总路径数。此题跟青蛙踩阶梯的那道题很相似:“假如有10步台阶,一次可走一步或两步,那么要走到达台阶顶,有几种走法”。因此我们可用递归的方式完成。具体代码如下:

  1. int uniquePaths1(int m, int n)    
  2. {  
  3.     if (m <= 0 || n <= 0)  
  4.     {  
  5.         return 0;  
  6.     }  
  7.     if (m == 1 || n == 1)  
  8.     {  
  9.         return 1;  
  10.     }  
  11.     if (m == 2 && n == 2)&nbs
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值