labelme多目标标注问题

labelme多目标标注问题

问题:在labelme标注多目标时存在不匹配的问题,任何一张图片都是从1开始,不能自定义标签号,考虑改写json2datasets文件,使他根据标签名称去定义标签号。

解决:
我的目录层级是

/datasets_new/img1/img1_fuse.jpg
/datasets_new/img1/img1_fuse.json
/datasets_new/img2/img2_fuse.jpg
/datasets_new/img2/img2_fuse.json

执行脚本就把目录下所有json转换完毕,大家可以根据不同的目录方式,可以自行修改代码,

import os
import random
import shutil
import re

import argparse
import json
import os
import os.path as osp
import warnings
 
import PIL.Image
import yaml
 
from labelme import utils
import base64
 
def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n"
                  "multiple JSON files to generate a real-use dataset.")
    parser = argparse.ArgumentParser()
    parser.add_argument('data_path')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()

    #对不同标签定义一个号,每个号有自己的颜色...从1开始排就可以
    label_name_to_value = {
   
   '_background_': 0,
                           'change':1,
                           'disappear':2,
                           'add':3}
    count = []
    for i in os.listdir(args.data_path):
        path1 = os.path.join(args.data_path,i)
        for j in os.listdir(path1)
<think>好的,我现在需要帮助用户了解如何使用LabelMe进行目标跟踪的标注。根据用户提供的引用内容,我需要整合这些信息,尤其是引用[1]中提到的TrackMe工具,这是基于LabelMe开发的用于目标跟踪的扩展工具。 首先,我要明确用户的需求。用户可能已经知道LabelMe的基础标注功能,现在想进一步用于目标跟踪,比如多目标跟踪(MOT)。引用[1]提到TrackMe增加了边界框插值、ID关联和信息修改等功能,这些都是传统LabelMe不具备的。因此,教程应该包括安装TrackMe、启动工具、标注流程以及使用这些高级功能的方法。 接下来,我需要检查引用中的安装步骤。引用[2]和[4]提到了安装LabelMe的基本方法,但TrackMe可能需要从GitHub克隆仓库。例如,用户可能需要安装LabelMe之后,再安装TrackMe的特定版本。引用[3]提到了GitHub仓库,可能需要引导用户到TommyZihao的仓库获取代码。 然后,标注流程方面,引用[2]描述了在LabelMe中打开目录、创建矩形框并保存为.json文件。但对于目标跟踪,需要处理连续帧,引用[1]提到TrackMe的边界框插值和ID关联功能。因此,在标注步骤中,需要说明如何利用插值减少手动标注,以及如何关联目标ID。 还需要注意用户可能的操作系统,引用[2]提到在Ubuntu下使用LabelMe,但TrackMe应该跨平台,因为LabelMe基于Python。安装步骤可能需要使用conda环境,如“conda activate labelme”。 另外,引用[4]提到YOLOv8/YOLOv11的分割训练,但用户的问题是关于目标跟踪,可能涉及边界框而非分割,不过需要确认TrackMe是否支持分割标注。根据引用[1],TrackMe主要针对边界框和ID管理,因此教程应聚焦于此。 最后,生成相关问题时要考虑用户可能遇到的后续问题,比如如何处理ID切换、如何导出数据格式、性能优化等。确保问题目标跟踪标注相关,并基于提供的引用信息。</think>### 使用LabelMe进行目标跟踪标注的教程 LabelMe本身是通用标注工具,但其扩展工具**TrackMe**专门针对目标跟踪任务优化,支持边界框插值、ID关联等功能[^1]。以下是具体使用方法: --- #### **1. 环境准备** - **安装LabelMe**(TrackMe基于LabelMe开发): ```bash pip install labelme # 或使用conda环境(推荐)[^4] ``` - **获取TrackMe扩展**: 从GitHub克隆TrackMe仓库(需根据引用[1]查找具体仓库地址),替换LabelMe原有模块。 --- #### **2. 启动TrackMe工具** - 在终端激活环境并启动: ```bash conda activate labelme # 若使用conda[^2] labelme # 启动形界面 ``` --- #### **3. 标注流程(以多目标跟踪为例)** 1. **加载视频或像序列**: - 点击`Open Dir`选择连续帧所在的文件夹。 2. **标注初始帧**: - 右键创建矩形框(目标检测任务),输入目标ID(如`person_1`)。 3. **使用插值功能**: - 标注首尾帧的同一目标,TrackMe自动生成中间帧的边界框。 4. **ID关联与修正**: - 若目标ID错误,可通过`Modify Track ID`批量修改后续帧的ID。 5. **导出标注结果**: - 保存为`.json`文件(每帧生成一个文件),或导出为MOT格式数据集(如`train.txt`)。 --- #### **4. 关键功能说明** - **边界框插值**:减少手动标注工作量,适用于匀速运动的目标。 - **ID一致性**:通过关联功能避免目标跟丢或ID切换问题。 - **批量修改**:支持跨帧调整边界框位置或尺寸。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值