神经网络中常见的激活函数Sigmoid、Tanh和ReLU

激活函数在神经网络中起着至关重要的作用,它们决定了神经元的输出是否应该被激活以及如何非线性地转换输入信号。不同的激活函数适用于不同的场景,选择合适的激活函数可以显著影响模型的性能和训练效率。以下是三种常见的激活函数:SigmoidTanhReLU 的详细介绍。

1. Sigmoid 激活函数

公式:

在这里插入图片描述

图像:

在这里插入图片描述

特点:
  • 输出范围:(0, 1),将输入压缩到0到1之间。
  • 用途:常用于二分类问题中的输出层,因为它的输出可以解释为概率值(0表示负类,1表示正类)。
  • 优点
    • 输出具有良好的可解释性,适合用于需要概率输出的任务。
  • 缺点
    • 梯度消失问题:当输入较大或较小时,Sigmoid 函数的导数接近于0,导致反向传播时梯度几乎为零,使得权重更新非常缓慢,甚至停止更新。这在深度网络中尤为严重。
    • 非零中心化:Sigmoid 函数的输出不是以0为中心的,这会导致后续层的权重更新方向不一致,影响训练效率。<
### 回答1: Sigmoid 函数是一种非线性函数,它的输出值介于 0 1 之间,可以用来激活神经元。Tanh 函数也是一种非线性函数,其输出值也介于 -1 1 之间,可以用来激活神经元。ReLU 函数是一种常用的非线性函数,它的输出值是输入值的绝对值,可以用来激活神经元。 ### 回答2: Sigmoid函数、Tanh函数ReLU函数都是常用的激活函数,常用于神经网络模型中。 1. Sigmoid函数是一个非线性的函数,其数学定义为:f(z) = 1 / (1 + exp(-z))。它有一个S形的曲线,取值范围在0到1之间。Sigmoid函数的主要特点是将输入的连续实数转化为概率形式的输出,常用于二分类问题中,可以将输出映射到01之间,表示了某个事件发生的概率。然而,由于其容易出现梯度消失梯度爆炸的问题,当网络层数较多时,Sigmoid函数在反向传播中可能导致梯度无法有效地传播。 2. Tanh函数是双曲线正切函数,其数学定义为:f(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))。类似于Sigmoid函数,Tanh函数也是非线性函数,但其输出范围在-1到1之间。相比于Sigmoid函数,Tanh函数在原点附近有一个均值为0的对称点,具有更好的中心化特性,可以减小梯度爆炸的问题。然而,Tanh函数仍然存在梯度消失的问题。 3. ReLU函数是修正线性单元函数,其数学定义为:f(z) = max(0, z)。ReLU函数在输入大于零时输出等于输入,小于零时输出为零。ReLU函数具有简单的计算形式,并且在训练过程中具有更快的收敛速度。由于ReLU函数的输出非负,不存在梯度消失的问题。然而,ReLU函数在输入为负时会失活,导致相应神经元的权重梯度无法进行更新。为解决这个问题,出现了ReLU的变种,如Leaky ReLU、PReLU等。 总结来说,Sigmoid函数Tanh函数在某些场景下仍然有一定的应用,但在深度神经网络中,ReLU函数更受欢迎,因为它可以在一定程度上减轻梯度消失梯度爆炸问题,并提供更快的训练速度。 ### 回答3: Sigmoid函数是一种常用的激活函数,它将输入的实数映射到一个介于01之间的概率值。其公式为: \[f(x) = \frac{1}{1 + e^{-x}}\] 该函数的特点是输出在区间(0,1)之间,对于大部分实数输入都能产生有效的梯度,但在输入接近两端的时候,梯度会变得很小。因此,Sigmoid函数在深度神经网络的训练过程中可能会出现梯度消失的问题。 Tanh函数是双曲正切函数,它将输入的实数映射到一个介于-11之间的值。其公式为: \[f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}\] 与Sigmoid函数相比,Tanh函数的输出区间更大,梯度也更大。它相对于原点对称,并且输入为负数时,输出接近-1,输入为正数时,输出接近1。因此,Tanh函数适用于输出介于-11之间的情况,但仍然存在梯度消失的问题。 ReLU函数是修正线性单元函数,它将输入的实数映射为输入本身或者0。其公式为: \[f(x) = max(0, x)\] ReLU函数当输入为正数时,输出等于输入;当输入为负数时,输出为0。相较于Sigmoid函数Tanh函数,ReLU函数计算速度更快,并且不存在梯度消失的问题。然而,ReLU函数也存在一个缺点,就是在输入为负数时,梯度为0,从而导致对应的权重无法更新。为了解决这个问题,一些改进的版本如Leaky ReLUParametric ReLU被提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值