正则化(Regularization)是机器学习和统计建模中用来防止过拟合的一种技术。当模型过于复杂,例如拥有过多的参数或层级时,它可能会在训练数据上表现得非常好,但对未见过的数据(即测试数据或真实世界的数据)的泛化能力较差。这种情况被称为过拟合。
正则化通过向损失函数添加一个惩罚项来限制模型的复杂度,从而帮助提高模型的泛化能力。常见的正则化方法有以下几种:
1. L1 正则化 (Lasso)
- L1 正则化会在损失函数中加入所有权重的绝对值之和作为惩罚项。
- 该方法倾向于产生稀疏的模型,即很多权重会变为0,因此它可以用于特征选择。
- 惩罚项为:λ * Σ|
|,其中 λ 是正则化强度,
是模型的权重。
2. L2 正则化 (Ridge)
- L2 正则化会在损失函数中加入所有权重的平方和作为惩罚项。
- 与L1不同,L2不会让权重变成零,而是将它们缩小,使得模型更加平滑。
- 惩罚项为:λ * Σ(
) 。
3.Elastic Net
- Elastic Net 是L1和L2正则化的结合,它同时包含L1和L2的惩罚项。
- 这种方法在处理高度相关的特征时尤其有用。
- 惩罚项为:λ *