正则化(Regularization)

正则化(Regularization)是机器学习和统计建模中用来防止过拟合的一种技术。当模型过于复杂,例如拥有过多的参数或层级时,它可能会在训练数据上表现得非常好,但对未见过的数据(即测试数据或真实世界的数据)的泛化能力较差。这种情况被称为过拟合。

正则化通过向损失函数添加一个惩罚项来限制模型的复杂度,从而帮助提高模型的泛化能力。常见的正则化方法有以下几种:

1. L1 正则化 (Lasso)

  •   L1 正则化会在损失函数中加入所有权重的绝对值之和作为惩罚项。
  •  该方法倾向于产生稀疏的模型,即很多权重会变为0,因此它可以用于特征选择。
  • 惩罚项为:λ * Σ|w_i|,其中 λ 是正则化强度,w_i 是模型的权重。

2. L2 正则化 (Ridge)

  • L2 正则化会在损失函数中加入所有权重的平方和作为惩罚项。
  • 与L1不同,L2不会让权重变成零,而是将它们缩小,使得模型更加平滑。
  • 惩罚项为:λ * Σ(w_i^2) 。

3.Elastic Net

  • Elastic Net 是L1和L2正则化的结合,它同时包含L1和L2的惩罚项。
  • 这种方法在处理高度相关的特征时尤其有用。
  • 惩罚项为:λ *
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值