在 AI 大模型与检索增强生成(RAG)技术飞速发展的当下,LlamaIndex 作为连接用户数据与大模型的 “桥梁”,其核心组件的作用愈发凸显。而模型层作为 LlamaIndex 的 “动力核心”,直接决定了数据处理、知识检索与内容生成的效率和质量。本文将聚焦模型层的三大核心 ——LLM(大语言模型)、Embedding 模型与多模态模型,带你揭开 LlamaIndex 高效运转的技术密码。
一、大语言模型 (LLMs)
大语言模型(LLM)是任何 LLM 应用的核心引擎,负责文本生成和逻辑推理。在 LlamaIndex 中,LLM 不仅用于在检索到相关上下文后生成最终答案,还可能在索引构建、节点插入和查询路由等多个环节发挥作用。
1.1 LLM 组件的核心作用
选择一个合适的 LLM 是构建应用的第一步。LlamaIndex 的设计哲学是提供一个统一、简洁的 LLM 接口,使开发者可以无缝切换和使用来自 OpenAI, Hugging Face, LangChain 等不同来源的模型,而无需关心底层的样板代码。
这个统一接口主要提供以下支持:
- 文本补全与聊天模式:支持
complete
(针对文本续写) 和chat
(针对多轮对话) 两种主流交互模式。 - 流式与非流式传输:支持
stream_complete
等流式接口,可实现打字机效果,提升用户体验。 - 同步与异步调用:全面支持同步和异步编程,方便集成到不同架构的应用中。
1.2 LLM 的基本用法
LlamaIndex 允许通过 Settings
模块设置全局默认的 LLM,也可以在具体任务中(如查询引擎)局部指定 LLM。
(1) 安装依赖
首先,确保已安装所需的 LLM Python 包。以 OpenAI 为例:
pip install llama-index-llms-openai
(2) 使用模式
下面是几种常见的使用方式:
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
# 模式一:设置全局默认 LLM
# 这样一来,所有后续的 LlamaIndex 操作都将默认使用 gpt-3.5-turbo
Settings.llm = OpenAI()
# 模式二:作为独立模块使用
# 直接调用 llm 实例的 complete 方法
llm_instance = OpenAI()
resp = llm_instance.complete("Paul Graham is ")
print(resp)
# 模式三:在特定组件中覆盖 LLM
# 假设已经有了一个 index 对象
# 在创建查询引擎时,通过 llm 参数传入一个特定的模型实例
custom_llm = OpenAI(model="gpt-4o-mini", temperature=0.1)
query_engine = index.as_query_engine(llm=custom_llm)
chat_engine = index.as_chat_engine(llm=custom_llm)
1.3 独立使用 LLM 模块
即使脱离 LlamaIndex 的索引和查询流程,其 LLM 模块本身也非常好用。
(1) 文本补全示例 (Text Completion)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4o-mini")
# 非流式调用:一次性获取完整结果
response = llm.complete("The best thing about AI is ")
print(f"非流式输出: {response}")
# 流式调用:逐个 token 打印,实现实时效果
print("\n流式输出: ", end="")
stream_response = llm.stream_complete("The best thing about AI is ")
for delta in stream_response:
print(delta.delta, end="")
print()
(2) 聊天模式示例 (Chat)
聊天模式更适合多轮对话场景,它接收一个消息列表作为输入。
from llama_index.core.llms import ChatMessage
from llama_index.llms.openai import OpenAI
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality who loves to say 'Ahoy!'"
),
ChatMessage(role="user", content="What is your name, captain?"),
]
resp = OpenAI(model="gpt-4o-mini").chat(messages)
print(resp.message.content)
1.4 在 LlamaIndex 抽象中自定义 LLM
LlamaIndex 默认使用 OpenAI 的 gpt-3.5-turbo
模型。但在实际项目中,我们常常需要根据成本、性能和任务需求更换模型。
(1) 更换预置 LLM 模型
例如,我们想将默认模型更换为性能更强、成本也更高的 gpt-4o-mini
,并设置较低的 temperature
以获得更稳定的输出。
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
# 1. 定义一个新的 LLM 实例,指定模型和参数
llm = OpenAI(temperature=0.1, model="gpt-4o-mini")
# 2. 将其设置为全局默认 LLM
Settings.llm = llm
# 3. 加载数据并构建索引(此时会使用 gpt-4o-mini)
documents = SimpleDirectoryReader("your_data_directory").load_data()
index = VectorStoreIndex.from_documents(documents)
# 4. 创建查询引擎(默认继承全局设置)
query_engine = index.as_query_engine()
# 5. 当然,也可以在查询时再次局部覆盖
# query_engine = index.as_query_engine(llm=another_llm)
response = query_engine.query(
"What did the author do after his time at Y Combinator?"
)
print(response)
(2) 实现完全自定义的 LLM (高级)
如果需要集成一个私有部署的模型或 LlamaIndex 尚未官方支持的模型,可以通过继承 CustomLLM
基类来实现。这要求你自行处理模型调用逻辑。
核心步骤:
- 创建一个继承自
CustomLLM
的类。 - 实现
metadata
属性,提供模型的元信息(如上下文窗口大小、模型名称等)。 - 实现
complete
和stream_complete
方法,在这两个方法中调用你的模型 API 并返回CompletionResponse
或CompletionResponseGen
对象。 - 使用
@llm_completion_callback()
装饰器可以获得更好的可观测性。
下面是一个简化的样板代码,演示了如何包装一个“虚拟”的本地模型:
from typing import Optional, List, Mapping, Any
from llama_index.core import SimpleDirectoryReader, SummaryIndex, Settings
from llama_index.core.callbacks import CallbackManager
from llama_index.core.llms import (
CustomLLM,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
class MyPrivateLLM(CustomLLM):
context_window: int = 4096
num_output: int = 256
model_name: str = "my-private-model-v1"
dummy_response: str = "This is a response from my very own private LLM!"
@property
def metadata(self) -> LLMMetadata:
"""获取LLM元数据。"""
return LLMMetadata(
context_window=self.context_window,
num_output=self.num_output,
model_name=self.model_name,
)
@llm_completion_callback()
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
# 在这里实现对你的私有模型API的调用
print(f"--- Calling my private model with prompt: {prompt[:50]}... ---")
return CompletionResponse(text=self.dummy_response)
@llm_completion_callback()
def stream_complete(
self, prompt: str, **kwargs: Any
) -> CompletionResponseGen:
# 实现流式响应逻辑
response = ""
for token in self.dummy_response:
response += token
yield CompletionResponse(text=response, delta=token)
# --- 使用自定义LLM ---
# 设置全局LLM为我们的私有模型
Settings.llm = MyPrivateLLM()
# 为实现完全离线,建议也设置一个本地 embedding 模型
Settings.embed_model = "local:BAAI/bge-base-en-v1.5"
# 加载数据、构建索引和查询
documents = SimpleDirectoryReader("./your_data_directory").load_data()
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("Tell me something interesting.")
print(response)
注意:使用自定义模型时,可能需要调整 LlamaIndex 内部使用的 默认提示词,以适配你的模型特性,从而获得最佳性能。
1.5 关于 Tokenizer 的重要提示
LlamaIndex 默认使用一个全局的 Tokenizer (tiktoken
的cl100k
) 来计算 token 数量,这与默认的 LLM (gpt-3.5-turbo
) 相匹配。如果你更换了 LLM,务必也要更新 Tokenizer,以确保 token 计数、文本切块和提示词长度的准确性。
一个合法的 Tokenizer 只需要是一个可调用对象,它接收一个字符串,返回一个 token ID 列表。
from llama_index.core import Settings
# 示例1:为其他 OpenAI 模型设置 tiktoken
import tiktoken
Settings.tokenizer = tiktoken.encoding_for_model("gpt-4o-mini").encode
# 示例2:为 Hugging Face 模型设置
from transformers import AutoTokenizer
# 这里的模型名称应与你使用的 Hugging Face LLM 匹配
Settings.tokenizer = AutoTokenizer.from_pretrained(
"HuggingFaceH4/zephyr-7b-beta"
).encode # 注意,这里我们直接使用 encode 方法
1.6 支持的 LLM 集成列表
LlamaIndex 生态非常丰富,支持海量模型集成,以下是部分列表:
类型 | 厂商/模型 |
---|---|
主流云服务 | OpenAI, Azure OpenAI, Anthropic, Bedrock, Google Gen AI, SageMaker |
开源/本地化 | HuggingFace, Llama CPP, vLLM, Ollama, LocalAI, Nvidia TensorRT-LLM |
新兴平台 | Groq, MistralAI, Perplexity, Together.ai, Fireworks, Replicate |
其他 | LangChain, Cohere, Dashscope, Yi, AI21, … |
二、嵌入模型 (Embeddings)
如果说 LLM 是大脑,那么 Embedding 模型就是连接物理世界(文本)和数字世界(向量)的桥梁。它负责将文本转换成高维的数字向量,这些向量能够捕捉文本的语义信息。
2.1 Embedding 的核心概念
Embedding 模型接收文本输入,输出一个固定长度的浮点数列表(即向量)。这些模型经过训练,能将语义相近的文本映射到向量空间中相近的位置。例如,“关于狗的问题”的查询向量,会与“讨论犬类动物”的文档块向量在空间上非常接近。
LlamaIndex 默认使用余弦相似度 (cosine similarity) 来度量向量间的相似性,从而找出与用户查询最相关的文档。默认的 Embedding 模型是 OpenAI 的 text-embedding-ada-002
。
2.2 Embedding 的标准用法
与 LLM 类似,Embedding 模型通常在 Settings
中进行全局配置,然后在构建向量索引 (VectorStoreIndex
) 时使用。
(1) 安装与基础配置
首先安装依赖:
# 如果使用 OpenAI
pip install llama-index-embeddings-openai
# 如果使用 HuggingFace 本地模型
pip install llama-index-embeddings-huggingface sentence-transformers
然后配置和使用:
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# --- 方案一:使用 OpenAI (默认) ---
# 全局设置
Settings.embed_model = OpenAIEmbedding()
# 局部使用/独立调用
embedding_module = OpenAIEmbedding()
text_embedding = embedding_module.get_text_embedding("hello world")
print(f"单个文本嵌入向量 (前5维): {text_embedding[:5]}")
list_embeddings = embedding_module.get_text_embeddings(["hello world", "this is a test"])
print(f"嵌入了 {len(list_embeddings)} 个文本")
# --- 方案二:使用本地 Hugging Face 模型 (节省成本) ---
# BAAI/bge-small-en-v1.5 是一个性能优异且快速的轻量级模型
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# --- 在索引构建中使用 ---
documents = SimpleDirectoryReader("your_data_directory").load_data()
# VectorStoreIndex 在构建时会自动使用 Settings.embed_model
index = VectorStoreIndex.from_documents(documents)
# 也可以在构建时局部指定
# index = VectorStoreIndex.from_documents(documents, embed_model=custom_embed_model)
在查询时,查询文本也会被同一个 Embedding 模型转换成向量,以便在向量数据库中进行相似度搜索。
2.3 Embedding 模型深度定制
(1) 调整批处理大小 (Batch Size)
向 OpenAI 等 API 发送嵌入请求时,LlamaIndex 默认的批处理大小是 10
。如果遇到速率限制,可以调小它;如果需要处理大量文档,可以适当调大以提高效率。
from llama_index.embeddings.openai import OpenAIEmbedding
# 将批处理大小设置为 42
embed_model = OpenAIEmbedding(embed_batch_size=42)
Settings.embed_model = embed_model
(2) 使用本地 Embedding 模型
使用本地模型可以有效降低成本并保护数据隐私。HuggingFaceEmbedding
是最便捷的方式。
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5" # 可替换为任何 Sentence Transformers 模型
)
HuggingFaceEmbedding
构造函数接受的额外参数(如 backend
, model_kwargs
, truncate_dim
)会被传递给底层的 SentenceTransformer
实例,提供了丰富的自定义空间。
(3) 使用 ONNX 或 OpenVINO 进行推理加速
LlamaIndex 支持通过 Optimum 库利用 ONNX 或 OpenVINO 对本地模型进行加速。
首先安装所需依赖:
pip install llama-index-embeddings-huggingface
# 根据你的硬件选择安装
pip install optimum[onnxruntime-gpu] # GPU 上的 ONNX
pip install optimum[onnxruntime] # CPU 上的 ONNX
pip install optimum-intel[openvino] # Intel CPU 上的 OpenVINO
使用时,只需在 HuggingFaceEmbedding
中指定 backend
:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5",
backend="onnx", # 或者 "openvino"
)
如果模型仓库中不存在预转换的 ONNX/OpenVINO 模型,Optimum 会自动进行转换。
(4) 集成 LangChain 的 Embedding
LlamaIndex 与 LangChain 兼容良好,可以直接使用 LangChain 提供的 Embedding 类。
pip install llama-index-embeddings-langchain langchain-community
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from llama_index.core import Settings
# 注意这里导入的是 LangChain 的类
Settings.embed_model = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en")
(5) 实现完全自定义的 Embedding 模型
当需要使用特殊模型(如需要指令微调的 Instructor Embeddings)或私有模型时,可以继承 BaseEmbedding
类。
以下是为 Instructor Embeddings 创建自定义包装类的示例,它允许在嵌入时提供一个“指令”来引导模型关注特定领域的语义。
from typing import Any, List
from InstructorEmbedding import INSTRUCTOR # 需要先 pip install InstructorEmbedding
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core import Settings
class InstructorEmbeddings(BaseEmbedding):
def __init__(
self,
instructor_model_name: str = "hkunlp/instructor-large",
instruction: str = "Represent the Computer Science documentation or question:",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self._model = INSTRUCTOR(instructor_model_name)
self._instruction = instruction
def _get_query_embedding(self, query: str) -> List[float]:
# 为查询生成带指令的嵌入
embeddings = self._model.encode([[self._instruction, query]])
return embeddings[0].tolist()
def _get_text_embedding(self, text: str) -> List[float]:
# 为文档生成带指令的嵌入
embeddings = self._model.encode([[self._instruction, text]])
return embeddings[0].tolist()
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
# 批量处理
embeddings = self._model.encode(
[[self._instruction, text] for text in texts]
)
return embeddings.tolist()
async def _aget_query_embedding(self, query: str) -> List[float]:
# 异步版本
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> List[float]:
# 异步版本
return self._get_text_embedding(text)
# 使用自定义的 Instructor Embedding 模型
Settings.embed_model = InstructorEmbeddings()
2.4 支持的 Embedding 集成列表
LlamaIndex 支持广泛的 Embedding 模型,包括但不限于:OpenAI, Azure OpenAI, Cohere, HuggingFace, Google PaLM, MistralAI, VoyageAI, JinaAI, Nomic 等。
三、多模态模型 (Multi-modal)
传统 LLM 是纯文本模型,而多模态大模型(LMMs)则将输入和输出扩展到了文本之外的模态,如图像。例如,GPT-4V 可以同时接收文本和图像作为输入,并生成文本作为输出。
3.1 多模态模型的核心概念
LlamaIndex 通过 MultiModalLLM
抽象来支持文图混合模型。这为构建能够理解图像内容的 RAG 应用打开了大门。
3.2 多模态模型基本用法
以 OpenAI 的 GPT-4V (Vision) 为例,展示如何使用多模态模型来描述一张图片。
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
from llama_index.core import SimpleDirectoryReader
# 方式一:从 URL 加载图片
image_urls = [
"https://www.popsci.com/uploads/2023/10/10/porsche-mission-x-front.jpg?auto=webp"
]
image_documents = load_image_urls(image_urls)
# 方式二:从本地目录加载图片
# image_documents = SimpleDirectoryReader("./image_folder/").load_data()
# 初始化多模态 LLM
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", max_new_tokens=300
)
# 发送请求,同时传入文本提示和图片文档
response = openai_mm_llm.complete(
prompt="What car is this? Describe its color and key features.",
image_documents=image_documents
)
print(response)
3.3 构建多模态向量索引
为了实现对图像内容的检索,我们需要构建一个多模态向量索引。MultiModalVectorStoreIndex
支持将文本和图像分别存储在不同的向量存储中。
import qdrant_client
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
# 1. 初始化 Qdrant 客户端作为向量数据库
client = qdrant_client.QdrantClient(path="qdrant_mm_db")
# 2. 为文本和图像分别创建向量存储
text_store = QdrantVectorStore(client=client, collection_name="text_collection")
image_store = QdrantVectorStore(client=client, collection_name="image_collection")
# 3. 创建存储上下文
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
# 4. 加载包含文本和图像的文档
# 假设 ./data_folder/ 目录下有 .txt 文件和 .jpg/.png 文件
documents = SimpleDirectoryReader("./data_folder/").load_data()
# 5. 构建多模态索引
# LlamaIndex 会自动识别文档类型,并使用相应的 embedding 模型处理
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
3.4 多模态检索与查询
构建好多模态索引后,就可以创建检索器和查询引擎来执行图文联合查询。
from llama_index.core import PromptTemplate
# 1. 从索引创建多模态检索器
retriever = index.as_retriever(
similarity_top_k=3, image_similarity_top_k=3
)
# 2. 使用文本查询进行检索,可以同时返回相关的文本和图像
retrieval_results = retriever.retrieve("Tell me more about the Porsche")
# 3. 创建一个多模态查询引擎
# openai_mm_llm 是之前创建的 GPT-4V 实例
query_engine = index.as_query_engine(
multi_modal_llm=openai_mm_llm
)
# 4. 执行端到端的查询
# LlamaIndex 会先进行检索,然后将检索到的文本和图像信息喂给多模态LLM
response = query_engine.query("Tell me more about the Porsche based on the images")
print(response)
3.5 多模态 RAG 工作流概览
下表总结了 LlamaIndex 在多模态 RAG 各个环节的支持情况(✅: 支持, ⚠️: 可能需调试, 🛑: 暂不支持)。
端到端工作流
查询类型 | 数据源 | 多模态 Embedding | 检索器 | 查询引擎 | 输出 |
---|---|---|---|---|---|
文本 | 文本✅, 图像✅ | 文本✅, 图转文✅ | Top-k✅, 融合检索✅ | 简单引擎✅ | 检索文本✅, 生成文本✅ |
图像 | 文本✅, 图像✅ | 图像✅, 图转文✅ | Top-k✅, 融合检索✅ | 简单引擎✅ | 检索图像✅, 生成图像🛑 |
音频 | 音频🛑 | 音频🛑 | 🛑 | 🛑 | 音频🛑 |
视频 | 视频🛑 | 视频🛑 | 🛑 | 🛑 | 视频🛑 |
主流多模态模型支持
模型 | 单图推理 | 多图推理 | 图像Embedding | 简单查询引擎 | Pydantic结构化输出 |
---|---|---|---|---|---|
GPT-4V (OpenAI) | ✅ | ✅ | 🛑 | ✅ | ✅ |
GPT-4V (Azure) | ✅ | ✅ | 🛑 | ✅ | ✅ |
Gemini (Google) | ✅ | ✅ | 🛑 | ✅ | ✅ |
CLIP (Local) | 🛑 | 🛑 | ✅ | 🛑 | 🛑 |
LLaVa (Replicate) | ✅ | 🛑 | 🛑 | ✅ | ⚠️ |
3.6 支持的多模态模型与向量存储
- 多模态LLM模块:已集成 OpenAI, Gemini, Anthropic (Opus, Sonnet), Replicate (LLaVA, Fuyu-8B), CogVLM 等。
- 多模态向量存储:LlamaIndex 内置的
MultiModalVectorStoreIndex
可以与任何标准向量库(如 Chroma, Qdrant, Weaviate)结合,通过分离存储文本和图像向量来实现多模态。ChromaDB 本身也提供了对多模态数据的原生支持。
四、LlamaIndex 其他核心组件概览
除了模型,LlamaIndex 还包含一系列其他核心组件,共同构成了一个完整的 RAG 框架。这里简要介绍,我们将在后续文章中详细展开。
- 数据加载 (Loading): 提供了
SimpleDirectoryReader
和大量Data Connectors
,用于从各种数据源(文件、数据库、API)加载数据,并转换为Document
对象。 - 提示词 (Prompts): 强大的提示词工程能力,允许你定制、优化和管理与 LLM 交互的各种提示模板。
- 索引 (Indexing): 将
Document
转换为可供高效检索的数据结构。除了VectorStoreIndex
,还包括Property Graph Index
等多种索引类型。 - 存储 (Storing): 负责持久化数据,包括
Vector Stores
(存储嵌入向量),Document Stores
(存储原始文档), 和Index Stores
(存储索引元数据)。 - 查询 (Querying): 框架的执行核心,包括
Query Engines
(处理查询),Chat Engines
(构建对话机器人),Retrieval
(检索上下文), 和Response Synthesis
(合成答案)。 - 智能体 (Agents): 赋予 LLM 使用工具 (Tools) 和拥有记忆 (Memory) 的能力,以执行更复杂的、多步骤的任务。
- 工作流 (Workflows): 用于构建和编排复杂的多步骤 AI 流程。
- 评估 (Evaluation): 提供了一套评估框架和标准数据集 (
LlamaDatasets
),用于测试和改进你的应用性能。 - 可观测性 (Observability): 通过
Instrumentation
帮助你监控和调试应用的内部运行状态。 - 全局配置与部署 (Settings & Llama Deploy): 提供了全局配置 (
Settings
) 和将应用部署到生产环境的工具 (Llama Deploy
)。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!