一、Dify的介绍
Dify 是一款创新的智能生活助手应用,旨在为您提供便捷、高效的服务。通过人工智能技术,Dify 可以实现语音助手、智能家居控制、日程管理等功能,助您轻松应对生活琐事,享受智慧生活。简约的界面设计,让操作更加便捷;丰富的应用场景,满足您多样化的需求。Dify,让生活更简单!
二、Dify的安装方式
1.在线体验
速度比较慢。不推荐
2.本地部署
2.1Docker安装
安装Docker环境
bash <(curl -sSl
https://cdn.jsdelivr.net/gh/SuperManito/LunuxMirrors@main/DockerI
nstallation.sh)
安装Docker Compose
curl -L
"https://github.com/docker/compose/releases/latest/download/docke
r-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-
compose && chmod +x /usr/local/bin/docker-compose
执行查看Docker-compose版本
docker-compose --version
说明安装成功了
docker-compse拉取镜像很慢
sudo tee /etc/docker/daemon.json <<-'EOF'
{
"registry-mirrors":
[ "https://do.nark.eu.org",
"https://dc.j8.work",
"https://docker.m.daocloud.io",
"https://dockerproxy.com",
"https://docker.mirrors.ustc.edu.cn",
"https://docker.nju.edu.cn"
]
}
EOF
执行上面的代码
sudo systemctl daemon-reload # 重新加载 systemd 的配置文件
systemctl restart docker # 重启docker
然后去GitHub上拉取dify的代码。解压后进入到docker目录中
docker-compose up -d
执行即可
2.2DockerDeskTop
https://www.docker.com/products/docker-desktop/
在Windows环境下我们可以通过DockerDesktop 来安装。直接去官网下载对应的版本即可。同样的我们需要拉取dify的GitHub的代码。然后进入到Docker目录,同样的执行这个代码
docker-compose up
这个代码执行可以能提示连接超时。需要配置下镜像代理
然后在地址栏中输入 http://localhost/install 就可以访问了
我们先设置管理员的相关信息。设置后再登录
3、Ollama
https://ollama.com/
我们已经把Dify在本地部署了。然后我们可以通过Ollama在本地部署对应的大模型,比如 deepseek-r1:1.5b 这种小模型
Ollama 是一个让你能在本地运行大语言模型的工具,为用户在本地环境使用和交互大语言模型提供了便利,具有以下特点:
1)多模型支持:Ollama 支持多种大语言模型,比如 Llama 2、Mistral 等。这意味着用户可以根据自己的需求和场景,选择不同的模型来完成各种任务,如文本生成、问答系统、对话交互等。
2)易于安装和使用:它的安装过程相对简单,在 macOS、Linux 和 Windows 等主流操作系统上都能方便地部署。用户安装完成后,通过简洁的命令行界面就能与模型进行交互,降低了使用大语言模型的技术门槛。
3)本地运行:Ollama 允许模型在本地设备上运行,无需依赖网络连接来访问云端服务。这不仅提高了数据的安全性和隐私性,还能减少因网络问题导致的延迟,实现更快速的响应。
搜索Ollama进入官网https://ollama.com/download,选择安装MAC版本的安装包,点击安装即可
下载完成后直接双击安装即可
命令:ollama,出现下面内容,说明安装成功
启动Ollama服务
输入命令【ollama serve】,浏览器打开,显示running,说明启动成功
安装 deepseek-r1:1.5b模型
在https://ollama.com/library/deepseek-r1:1.5b 搜索deepseek-R1,跳转到下面的页面,复制这个命令,在终端执行,下载模型
cmd中执行这个命令
4、Dify关联Ollama
Dify 是通过Docker部署的,而Ollama 是运行在本地电脑的,得让Dify能访问Ollama 的服务。
在Dify项目-docker-找到.env文件,在末尾加上下面的配置:
# 启用自定义模型
CUSTOM_MODEL_ENABLED=true
# 指定 Olama 的 API地址(根据部署环境调整IP)
OLLAMA_API_BASE_URL=host.docker.internal:11434
然后在模型中配置
在Dify的主界面 http://localhost/apps ,点击右上角用户名下的【设置】
在设置页面–Ollama–添加模型,如下:
添加成功后的
模型添加完成以后,刷新页面,进行系统模型设置。步骤:输入“http://localhost/i nstall”进入Dify主页,用户名–设置–模型供应商,点击右侧【系统模型设置】,如下:
这样就关联成功了!!!
三、Dify应用讲解
1、 创建空白应用
我们通过Dify来创建我们的第一个简单案例,智能聊天机器人进入Dify 主界面,点击【创建空白应用】,如下图:
选择【聊天助手】,输入自定义应用名称和描述,点击【创建】
右上角选择合适的模型,进行相关的参数配置
输入有相关的回复了。此时说明Dify 与本地部署的DeepSeek大模型已经连通了。
上面的机器人有个不足之处就是无法回答模型训练后的内容和专业垂直领域的内容,这时我们可以借助本地知识库来解决专业领域的问题。
2、 创建本地知识库
2.1向量模型
Embedding模型是一种将数据转换为向量表示的技术,核心思想是通过学习数据的内在结构和语义信息,将其映射到一个低维向量空间中,使得相似的数据点在向量空间中的位置相近,从而通过计算向量之间的相似度来衡量数据之间的相似性。
Embedding模型可以将单词、句子或图像等数据转换为低维向量,使得计算机能够更好地理解和处理这些数据。在NLP领域,Embedding模型可以将单词、句子或文档转换为向量,用于文本分类、情感分析。机器翻译等任务。在计算机视觉中,Embedding模型可以用于图像识别和检索等任务。
2.2添加Embedding模型
点击右上角用户名–设置–模型供应商–右上角【添加模型】,填写相关配置信息如下:
添加成功后的效果
2.3创建知识库
在Dify主界面,点击上方的【知识库】,点击【创建知识库】
导入已有文本,上传资料,点击【下一步】
Embedding模型默认是前面配置的模型,参数信息配置完,点击保存即可
此时系统会自动对上传的文档进行解析和向量化处理,需要耐心等待几分钟。
创建成功以后,如下图,可以点击【前往文档】,查看分段信息,如下图:
点击具体的文档可以看到具体的分割信息
3、知识库应用
3.1添加知识库
在Dify主界面,回到刚才的应用聊天页面,工作室–智能聊天机器人–添加知识库,如下图:
选择前面上面的知识库作为对话的上下文,保存当前应用设置,就可以进行测试了
3.2测试
此时输入问题,就可以看到相关的回复了。
4、 AI图片生成工具
随着图像生成技术的兴起,涌现了许多优秀的图像生成产品,比如 Dall-e、Flux、 Stable Diffusion 等,我们借助Stable Diffusion来在dify中构建一个智能生成图片的 Agent。
4.1首先获取Stable Diffusion
https://platform.stability.ai/account/keys 去官网获取授权key。如果没注册需要先注册下
4.2下载 Stable 工具
然后我们需要进入dify的工具市场下载安装 Stable 插件。
4.3创建Agent
然后我们就可以创建一个空白的Agent。输入对应的提示词
根据用户的提示,使用工具 stability_text2image 绘画指定内容
然后选择对应的工具并添加授权码
然后我们就可以测试效果了
注意这个是一个付费的工具。提供的有一个免费的,后面需要付费购买了:https://p latform.stability.ai/account/credits
5、旅游助手
进入SerpAPI - API Key,如果你尚未注册,会被跳转至进入注册页。
SerpAPI提供一个月100次的免费调用次数,这足够我们完成本次实验了。如果你需要更多的额度,可以增加余额,或者使用其他的开源方案。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!