自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1101)
  • 收藏
  • 关注

原创 盘点50个AI大模型企业和典型产品

ChatGPT:是OpenAI推出的非常具有影响力的聊天机器人程序,能够进行自然流畅的对话、文本创作、问题解答等,不断迭代升级,引发了全球对大模型的广泛关注。- GPT-4O:OpenAI的新一代AI模型,在语言理解和生成能力上有进一步提升,能够感知用户的情绪,并针对问题以带有情绪的“嗓音”做出反馈。- Sora:文生视频大模型,可根据文本指令生成复杂且具有一定时长的视频,具有多个镜头、准确的角色和视觉风格保留等特点,但仍在开发完善中。

2024-10-10 16:54:30 3495

原创 9款GPU横评,哪些适合大模型训练,哪些适合推理任务?

在 AI 领域,有两大场景对 GPU 的需求最大,一个是模型训练,另一个是 AI 推理任务。但是很多人多可能在最开始为自己的项目做 GPU 选型时,都很难判断哪些 GPU 适合做模型训练,哪些 GPU 更适合去做推理任务。所以我们通过这篇文章将基于 GPU 指标来帮助大家对比分析NVIDIA 的 H100、A100、A6000、A4000、V100、P6000、RTX 4000、L40s、L4 九款GPU,哪些更推荐用于模型训练,哪些则更推荐用于推理。

2024-09-24 15:10:47 9484

原创 大模型学习路线(超全面!超详细!)收藏这一篇就够了!

在深度学习领域,"大模型"通常指的是模型参数数量庞大、拥有深层结构的神经网络。这些模型的规模通常表现为网络中的参数数量,即模型中需要学习的权重和偏置的数量。具体来说,大模型可能包含数百万到数十亿的参数。

2024-09-23 11:59:31 4031

原创 深度学习必备框架:7步轻松搞定 Pytorch 基础!

接下来我们定义网络结构,由于是图像分类任务,因此我们的节点维度使用逐步降低的定义。nn.Flatten(), # 将维度转换为二维nn.Linear(784, 256), # 全连接层nn.ReLU(), # 激活函数nn.Linear(256, 10) # 全连接层。

2023-01-30 10:02:57 2796

原创 AI Agent 案例精讲:LangChain 框架落地与高考信息查询流程优化

本文介绍了基于LangChain框架的高考信息查询功能重构实践。原方案通过手工流程实现语义匹配、SQL生成、数据查询和结果分析,但存在扩展性不足的问题。采用LangChain框架后,利用其顺序链(SequentialChain)特性,将流程拆分为三个明确步骤:语义匹配表结构、生成执行SQL、分析结果。文章详细展示了代码实现,包括服务初始化、提示模板设计、链式调用构建等关键环节,并演示了"2016年考生人数"查询测试结果,验证了框架在规范流程、提升扩展性方面的优势。

2025-09-05 19:36:49 579

原创 AI 赋能核心拆解:到底 “赋” 什么?一文讲透逻辑与实践方向

AI 赋能核心拆解:到底 “赋” 什么?一文讲透逻辑与实践方向

2025-09-05 15:53:32 575

原创 一文讲清楚Agent九种设计模式有哪些?看完你的AI大模型就很牛了!

一文讲清楚Agent九种设计模式有哪些?看完你的AI大模型就很牛了!

2025-09-05 15:51:42 528

原创 你的 Agent 为何始终达不到理想效果?别只盯着上下文工程下功夫!

AI工程新范式:12-Factor Agents方法论解析 摘要: 随着Context Engineering(上下文工程)成为AI领域新焦点,Dex Horthy提出"12-Factor Agents"方法论,将LLM视为无状态函数,通过12条工程原则构建可靠、可维护的AI系统。核心观点包括:将工具调用简化为JSON+代码结构;显式控制执行流程而非依赖LLM判断;合并执行状态与业务状态以简化架构。该方法强调在确定性代码中精准嵌入LLM能力,而非构建完全自主的黑盒系统,为复杂AI应用开发

2025-09-04 20:45:00 740

原创 大模型微调不用愁!一文搞懂五种关键技术

大模型微调指南:从理论到实战 本文系统讲解大模型微调技术,将通用AI转化为专业工具。核心内容包括: 微调本质解析 - 类比"学霸实习",使通用模型掌握行业技能 五大微调方法:全参微调(高成本高效果)、PEFT(低成本高效)、提示词微调、指令微调、RLHF(ChatGPT核心技术) 五步实操流程:数据准备→模型选择→参数设置→效果评估→部署优化 学习资源推荐:包含完整学习路线、实战项目及行业专家整理的书籍资料 文末提供全套大模型学习资料包(含视频/案例/面试题),适合零基础开发者快速入门高

2025-09-04 20:00:00 1300

原创 从零了解智能问答:问答对和 RAG 两种常见方式

智能问答系统分为两种主流方案:基于问答对的问答和文档检索增强生成(RAG)。问答对方案通过预设问答库进行匹配,适合FAQ等固定场景,成本低但灵活性差;RAG则结合向量检索与大模型生成,能处理复杂查询,维护简单但成本较高。实际应用中,建议根据场景选择:客服等简单问答用问答对方案,研发文档等复杂场景更适合RAG,混合方案可兼顾效率与灵活性。随着技术进步,RAG将成为主流趋势。

2025-09-04 19:15:00 588

原创 大模型推理部署框架怎么选?:vLLM、SGLang、TensorRT-LLM、ollama、XInference框架对比

大模型推理部署框架怎么选?:vLLM、SGLang、TensorRT-LLM、ollama、XInference框架对比

2025-09-04 14:48:16 800

原创 程序员想转型?热门行业选什么、路径怎么走,这篇指南说透了

程序员想转型?热门行业选什么、路径怎么走,这篇指南说透了

2025-09-04 14:47:46 814

原创 颠覆认知:提示工程未死,反而重生为计算科学,一篇讲透 Prompt 设计的科学内核

大模型多步推理能力的突破与提示设计理论框架 摘要:本文揭示了Transformer架构在数学证明、棋类推理等多步推理任务中的固有缺陷——其注意力机制的固定计算步数限制(TC⁰复杂度)无法适应动态深度的推理需求。研究提出Chain-of-Thought(CoT)通过文本外化隐状态实现虚拟循环计算,并首次建立提示设计的理论框架,证明提示作为"信息选择器"可优化推理性能超50%。实验显示监督提示在9类任务中准确率显著优于无监督方法(如栈操作任务96% vs 0%),为LLM复杂推理提供了从经验

2025-09-03 21:00:00 715

原创 聚焦前沿:李飞飞谈 Agent_AI 多模态交互的探索重点与突破方向

人工智能发展源远流长,1956 年达特茅斯会议首次定义 AI 为 “可从环境收集信息并有效交互的人工生命形式”,奠定认知基础。1970 年米斯基团队 “复制演示” 机器人系统,揭示 AI 研究挑战,此后领域分化出机器学习等多个子领域。​如今 LLMs 与 VLMs 革新,推动 AI 社区从被动任务模型转向动态智能体,也让符合 “整体论” 的多能力 AI 体成为可能。本文聚焦融合多能力的 AI 模型,既强调其在多领域的应用潜力,也关注伦理问题,为多模态智能体发展提供全面视角。

2025-09-03 20:00:00 913

原创 普通人也能学!深度定制大模型的大白话指南

大语言模型在应用中存在偏见、毒性和知识错误三大问题。针对这些问题,研究者提出了模型编辑技术,通过局部修改模型参数来修正错误,避免重新训练的高成本。模型编辑方法分为外部拓展法(知识缓存、附加参数)和内部修改法(元学习、定位编辑)。关键评估指标包括准确性、泛化性、可迁移性、局部性和高效性。其中,定位编辑法通过修改特定神经元来精准调整知识表现,是目前最具前景的研究方向。该技术为快速修正大模型错误提供了高效解决方案,但仍需平衡知识的关联性与编辑的精准性。

2025-09-03 18:45:00 470

原创 小白也能懂!大语言模型(LLM)是如何 “思考” 和工作的?一文看懂!

小白也能懂!大语言模型(LLM)是如何 “思考” 和工作的?一文看懂!

2025-09-03 16:46:35 670

原创 想做大模型 / 智能体 AI 创业?先看这 3 个核心建议再行动

想做大模型 / 智能体 AI 创业?先看这 3 个核心建议再行动

2025-09-03 16:43:52 984

原创 手把手教你:通过 FastAPI 实现 DeepSeek 与 Qwen 大模型服务集成

本文介绍了如何使用FastAPI框架集成DeepSeek和Qwen大语言模型服务。FastAPI作为高性能Python Web框架,具有快速开发、高效编码等优势。文章详细展示了如何配置API密钥、安装依赖库,并提供了完整的代码实现,通过统一接口调用不同模型服务。最后给出了启动应用和测试接口的方法,帮助开发者快速构建大模型聚合服务。学习大模型技术可把握AI领域发展机遇,解决当前人才短缺问题。

2025-09-02 22:00:00 1042

原创 小白入门必看:一文了解提示词、提示词工程和上下文工程

摘要: 提示词是人与AI模型交互的基础载体,通过结构化设计和优化可提升输出质量(提示词工程)。上下文工程则通过整合历史对话、外部数据和工具调用,为模型提供全面背景信息。两者协同工作,前者优化单次交互,后者构建智能系统的信息基础。技术演进从简单提示词发展为提示词工程,再到更复杂的上下文工程。文章提供了提示词模板、优化工具及上下文管理方法,适用于从基础任务到AI智能体开发的不同场景。 (字数:149)

2025-09-02 20:00:00 903

原创 小白也能变大神,手把手教你LLaMA-Factory 微调医疗问答模型

摘要: 本文介绍如何使用LLaMA-Factory工具微调Qwen3-0.6B-Instruct模型构建中文医疗问答系统。该工具简化了大模型微调流程,提供可视化Web界面,无需编写复杂代码。从环境搭建(Ubuntu+CUDA+PyTorch)、安装LLaMA-Factory,到数据处理(Huatuo-Lite医疗数据集格式化)、参数配置(学习率5e-5、3-5训练轮次等关键参数说明),完整演示了微调过程。通过QLoRA技术实现消费级GPU(如RTX 3080)即可训练,最终可生成能回答医疗问题的AI助手,显

2025-09-02 19:00:00 1115

原创 零基础入门:n8n工作流自动化平台详解,从界面到核心组件,助你快速掌握AI自动化必备技能(建议收藏)

零基础入门:n8n工作流自动化平台详解,从界面到核心组件,助你快速掌握AI自动化必备技能(建议收藏)

2025-09-02 16:32:45 993

原创 吐血整理!2025 大厂 AI 大模型高薪岗 Transformer 面试题全汇总

吐血整理!2025 大厂 AI 大模型高薪岗 Transformer 面试题全汇总

2025-09-02 16:16:04 803

原创 打破认知!RAG 不止能检索,更是 LangGraph 中的 “工具调用大脑”

本文介绍了一种基于LangGraph和LangChain的模块化RAG系统实现方案。通过将检索器封装为可调用工具,并利用LangGraph的图结构流程编排能力,构建了一个灵活可扩展的餐厅问答代理系统。该系统能精准处理"BellaVista"餐厅相关查询,并通过独立工具处理无关话题,保持了最小代理状态。文章详细展示了从环境配置、数据准备到工作流构建的全过程,包括检索器工具化、状态管理、条件路由等关键环节,为模块化RAG开发提供了可落地的参考方案。虽然当前实现存在扩展性和记忆性局限,但为传统

2025-09-01 21:00:00 1401

原创 大模型上下文工程:如何用图记忆、向量检索与多智能体构建 “智能记忆系统”?

本文系统探讨了上下文工程在大语言模型应用中的核心作用。通过分析当前LLM系统存在的记忆缺失、幻觉等问题,指出问题根源在于上下文管理不当。文章提出"航海家"旅行助手案例,结合LangChain、Neo4j等技术实现短期记忆、持久记忆和运行时上下文的智能管理。对比测试表明,经过设计的智能上下文系统在准确性、个性化等指标上显著优于标准RAG和长上下文模型。进一步介绍了多智能体系统中的上下文隔离策略,以及图数据库与向量检索的融合应用。研究表明,合

2025-09-01 18:38:55 530

原创 从 Cursor 到 Claude Code:告别 AI 编程工具 Agent 配置难题,下一代通用 Agent 规范语言 ASL 深度解析

本文系统分析了8种主流AI编程工具的规则配置机制,将其分为结构化、启发式和人格化三类方法,揭示了不同工具在设计理念上的差异化。基于此,作者提出将OpenAI的AGENTS.md规范从编码领域扩展至更广泛的Agent应用场景,构建通用Agent规范语言(ASL),以解决当前生态碎片化问题。文章详细比较了各工具的配置文件格式、核心指令概念及优缺点,强调需要平衡机器可读性与人类可读性,最终实现各类Agent约束规则的自动化生成。

2025-09-01 17:35:13 865

原创 新兴领域太香了!有人已月入 6W+,现在入局来得及吗?(附行业视角)

新兴领域太香了!有人已月入 6W+,现在入局来得及吗?(附行业视角)

2025-09-01 15:44:45 818

原创 【AI 企业落地指南】从知识构建到应用:为什么知识库才是企业 AI 竞争力的核心?

【AI 企业落地指南】从知识构建到应用:为什么知识库才是企业 AI 竞争力的核心?

2025-09-01 15:41:08 1278

原创 LangChain vs LangGraph 全面测评:谁才是 AI Agent 落地的最优解?

大模型落地有两大主流方向:workflow 搭建与 Agent 开发,而这两类场景的实现,都离不开框架的支持,这已是行业共识。框架选得对不对,直接影响项目落地的效率与效果。在众多框架中,LangChain 与 LangGraph 因同属一个生态、功能各有侧重,常年占据高讨论度。至于二者的选型逻辑,可先明确结论:LangChain 以丰富组件和 LCEL 编排能力为核心,适合处理简单的一次性任务;LangGraph 则专为有状态 Agent 系统设计,是这类复杂场景的优选。二者功能互补,实际开发中可根据场景灵

2025-08-31 20:00:00 610

原创 别盲目跟风!向量数据库选型的核心考量点

AI 技术火了!大型语言模型、生成式 AI 用得越来越多,但你知道吗?它们背后的高维度向量数据,得靠 “向量数据库” 来存储和检索。不过向量数据库不是 “一刀切” 的:有的快但成本高,有的兼容性好但性能有限。本文就扒一扒主流向量数据库的优劣势,帮你在实际用的时候,选到最适合自己的那一款。

2025-08-31 07:45:00 554

原创 别再死记公式!用 “找信息” 的例子,讲清 Transformer QKV 到底在算什么

在 Transformer 架构主导的现代大模型时代,QKV(Query・Key・Value)三元组绝非简单的线性变换模块 —— 它是注意力机制的 “核心引擎”,更是模型实现 “动态信息筛选” 与 “全局关联建模” 的关键载体。看似基础的 “线性投影→点积计算→权重分配” 流程,实则暗藏着大模型理解输入、聚焦重点、整合信息的底层逻辑。本文将跳出 “公式表层解读”,从计算逻辑的数学本质与数据存储的维度关联两大视角,拆解 QKV 如何让注意力机制从 “理论概念” 落地为大模型的 “认知能力”,带你穿透 QK

2025-08-30 19:50:39 915

原创 实习生月入破万!2025 报志愿必看:未来 15 年人才缺口 400 万,这个领域要火!

实习生月入破万!2025 报志愿必看:未来 15 年人才缺口 400 万,这个领域要火!

2025-08-30 16:50:16 3573

原创 【程序员必看】一文搞懂RAG检索增强生成:大模型知识更新的革命性解决方案

【程序员必看】一文搞懂RAG检索增强生成:大模型知识更新的革命性解决方案

2025-08-30 16:48:22 912

原创 RAG系统性能提升关键:文档分块策略实战

你是否也遇到过这样的困境:RAG系统搭载的LLM明明性能强劲,Prompt也经过反复调校,但最终的问答效果却始终不尽如人意——答案要么上下文缺失、逻辑断裂,要么夹杂事实性错误,难以满足需求? 我们或许会优先排查检索算法的效率,或是优化Embedding模型的语义匹配精度,却常常忽略了一个关键环节:数据进入向量库前的文档分块。不合适的分块方式,相当于给后续流程提供了“劣质原料”——要么是顺序错乱的片段,要么是信息残缺的碎片。即便LLM能力再强,也无法从支离破碎的知识片段中,推理出完整、准确的答案。可以说,

2025-08-29 22:30:00 536

原创 大模型训练技术总结:监督微调(SFT)核心原理与实践

微调技术的分类可从不同维度清晰划分,核心分类逻辑与技术范畴如下,从**训练参数范围**来看,微调可分为两大方向:一是**全参数微调(Full Fine-Tuning)**,即对模型所有参数进行更新优化;二是**部分参数微调(Partial Fine-Tuning)**,仅针对性调整模型部分层或模块的参数。值得注意的是,**参数高效微调(PEFT,Parameter-Efficient Fine-Tuning)** 是部分参数微调的核心技术体系,涵盖一系列低参数消耗的具体方法与策略,因此在部分资料中,也会

2025-08-29 18:00:30 623

原创 大模型基础入门:模型量化的核心概念与技术全解析

大模型的训练与运行对计算资源需求极高:训练一个万亿参数级模型,往往需要调度数千块高性能GPU,总成本高达数百万美元。然而,当大模型从云端走向终端实际应用时——无论是智能手机的本地语音交互,还是智能汽车的车载场景理解——却面临着终端设备算力有限、能耗敏感、存储容量紧张的现实瓶颈。这就像一位力大无穷的巨人,空有强大能力,却在狭小的空间里难以灵活施展。为打破“云端强、终端弱”的适配僵局,**大模型量化技术**应运而生,成为连接大模型能力与终端部署需求的关键桥梁。

2025-08-29 17:26:21 970

原创 AI大模型职业地图:30个新兴方向详解,收藏这份指南把握AI时代机遇

AI大模型职业地图:30个新兴方向详解,收藏这份指南把握AI时代机遇

2025-08-29 15:53:45 708

原创 一文厘清 RAG 三大主流方案:传统 RAG、HyDE、Graph RAG 怎么选?附对比表格与工作流图解

摘要: 传统RAG通过检索外部知识增强LLM生成,减少幻觉但依赖检索质量;HyDE引入“假设性文档”优化检索语义匹配,提升召回率但增加计算开销;GraphRAG结合知识图谱增强推理能力,适合复杂关系场景但构建成本高。三者各有优劣,HyDE优化检索阶段,GraphRAG提升推理精度,未来或趋向融合应用。大模型学习资料涵盖理论、实战与面试题,助力零基础快速入门。

2025-08-29 12:01:21 730

原创 实战|Dify+Neo4j+LLM 构建非遗问答系统:完整工作流与关键配置解析

文章摘要:本文介绍了一个基于大模型的自然语言处理工作流,用于文化遗产知识图谱问答系统。工作流包含三个核心模块:1)意图解析模块,通过Prompt将用户问题拆解为可识别的"关系"和"实体",输出JSON格式;2)SQL匹配模块,根据解析结果自动生成Cypher查询语句;3)Neo4j查询模块,执行图谱查询并汇总结果。文中还分享了实现过程中的关键问题,如代码节点规范、HTTP请求编码处理等,并提供了大模型学习资源推荐,包括学习路线、实战项目、必读书籍和面试题库。

2025-08-28 18:37:23 736

原创 RAGFlow与Dify:知识库性能全面对比

RAGFlow知识库相比Dify的五大优势:1. 采用DeepDoc技术精准解析复杂文档,支持多语言混合、图表交织等场景;2. 提供页面排名、自动关键词提取、表格转HTML等进阶索引功能;3. 支持知识图谱生成,实现深度知识关联检索;4. 采用RAPTOR多路召回策略,结合向量/全文/图检索;5. 支持自定义元数据,实现精准筛选。配置上,Dify可通过API接入RAGFlow知识库,需填写API地址、密钥及具体知识库ID即可完成对接。

2025-08-28 17:54:12 608

原创 【收藏】RAG知识库实战指南:让智能体客服不再答非所问,从理论到落地的完整攻略

【收藏】RAG知识库实战指南:让智能体客服不再答非所问,从理论到落地的完整攻略

2025-08-28 17:15:15 643

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除