一文彻底搞懂大模型 - Agent(智能体)

电影《钢铁侠》中的智能助手J.A.R.V.I.S.(Just A Rather Very Intelligent System,即“只是一个相当聪明的系统”)为我们描绘了一个未来AI Agent的雏形。

J.A.R.V.I.S.,作为托尼·斯塔克(钢铁侠)的得力助手,不仅拥有强大的数据处理能力,还能精准理解并执行主人的指令,甚至能在关键时刻提供关键建议。

从这位虚拟助手的身影出发,基于LLM的AI Agent,它们正逐步从银幕走进现实,成为我们生活与工作中不可或缺的一部分。

一、LLM Agent

什么是LLM Agent? 大模型Agent是一种构建于大型语言模型(LLM)之上的智能体,它具备环境感知能力、自主理解、决策制定及执行行动的能力。

Agent是能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。在技术架构上,Agent从面向过程的架构转变为面向目标的架构,旨在通过感知、思考与行动的紧密结合,完成复杂任务。

LLM Agent

大模型Agent由规划、记忆、工具与行动四大关键部分组成,分别负责任务拆解与策略评估、信息存储与回忆、环境感知与决策辅助、以及将思维转化为实际行动。

LLM Agent

  1. 规划(Planning):
  • 定义:规划是Agent的思维模型,负责拆解复杂任务为可执行的子任务,并评估执行策略。

  • 实现方式:通过大模型提示工程(如ReAct、CoT推理模式)实现,使Agent能够精准拆解任务,分步解决。

  1. 记忆(Memory):
  • 定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。

  • 实现方式:短期记忆用于存储会话上下文,支持多轮对话;长期记忆则存储用户特征、业务数据等,通常通过向量数据库等技术实现快速存取。

  1. 工具(Tools):
  • 定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。

  • 实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,如ChatPDF解析文档、Midjourney文生图等。

  1. 行动(Action):
  • 定义:行动是Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。

  • 实现方式:Agent根据规划与记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

LLM Agent

二、LLM Agent + RAG

什么是LLM Agent + RAG**?**RAG技术为LLM Agent提供了额外的知识来源。传统的LLM虽然能够从大规模文本数据中学习到丰富的语言知识和模式,但它们在处理特定领域或需要专业知识的问题时可能表现不足。

通过引入RAG,LLM Agent能够在需要时查询外部知识库,如专业数据库、学术论文、行业报告等,从而增强其知识广度和深度。

****如何实现财报分析Agent?****通过集成大型语言模型(LLM)、检索增强生成(RAG)技术、自动化数据处理与分析工具,以及定制化的任务规划与执行流程,构建一个能够自动收集财报数据、进行深度分析并生成报告的智能代理系统。

财报分析Agent

财报分析Agent,自动化完成数据收集、分析与报告生成,具体步骤包括需求分析、架构设计、Prompt设计、数据获取、RAG检索、LLM处理、报告生成等。

  1. 需求分析:
  • 明确财报分析Agent的目标和功能需求,包括支持的财报类型、分析维度、报告格式等。

  • 确定用户群体及其需求,例如财务人员、管理层、投资者等。

  1. 架构设计:
  • 设计Agent的整体架构,包括Prompt设计模块、数据获取模块、RAG检索模块、LLM应用模块、报告生成模块等。

  • 确定各模块之间的接口和交互方式,确保数据流和控制流的顺畅。

  1. Prompt设计模块:
  • 设计合理的Prompt模板,以引导LLM模型更好地理解用户问题和意图。

  • 通过不断优化Prompt设计,提高Agent的回答质量和用户体验。

  1. 数据获取模块:
  • 开发数据获取脚本或接口,负责自动从指定的网站(如证券交易所、公司官网、财经新闻网站等)抓取财报数据和其他相关信息。

  • 对收集到的数据进行清洗、格式化、去重等预处理工作,确保数据质量。

  1. RAG检索模块:
  • 整理历史财报分析报告、行业报告、会计准则等资料,构建财报知识库。

  • 使用RAG技术对知识库进行索引和优化,允许Agent在回答财报分析问题时,能够从其知识库中检索相关的文档和片段。

  1. LLM处理模块:
  • 将LLM模型与RAG技术集成,配置模型参数和检索策略。

  • 利用LLM模型的强大语言理解和生成能力,对经过RAG检索增强的问题进行理解和回答。

  1. 报告生成模块:
  • 设计报告模板和格式化规则,确保生成的报告符合用户需求和规范。

  • 使用自然语言处理技术对报告初稿进行润色、校对和优化,提高报告的可读性和准确性。

  • 集成图表、表格等可视化工具,增强报告的数据呈现效果。

Agent Development

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

反向传播算法(Back-Propagation Algorithm,简称BP算法)是深度学习模型中用于优化神经网络参数的关键技术之一。其核心思想是通过链式求导法则,从输出层向输入层反向逐层计算神经网络中各参数的梯度,并利用这些梯度进行参数更新,从而最小化损失函数。 ### 神经网络与损失函数 在深度学习中,神经网络通过多层非线性变换将输入数据映射到输出空间。每层网络的参数(如权重和偏置)决定了模型的表达能力。为了衡量模型输出与真实标签之间的差异,通常定义一个损失函数(Loss Function),如均方误差(Mean Squared Error, MSE)或交叉熵损失(Cross-Entropy Loss)。反向传播的目标是通过最小化该损失函数来优化网络参数。 ### 反向传播的基本流程 反向传播算法的实现依赖于计算图(Computation Graph)的构建。在前向传播阶段,输入数据依次经过各层网络计算,最终得到输出结果。此时,损失函数的值也被计算出来。在反向传播阶段,系统利用链式法则从输出端开始,逐层计算损失函数对每个参数的偏导数,即梯度。这些梯度随后被用于参数更新,通常采用梯度下降法(Gradient Descent)或其变体(如Adam、RMSProp等): $$ w_{\text{new}} = w_{\text{old}} - \eta \cdot \frac{\partial L}{\partial w} $$ 其中,$ w $ 是参数,$ L $ 是损失函数,$ \eta $ 是学习率。 ### 链式法则与梯度传播 反向传播的核心在于链式法则的应用。假设某一层的输出为 $ y = f(x) $,而损失函数 $ L $ 是 $ y $ 的函数,则损失函数对 $ x $ 的导数可以通过链式法则计算: $$ \frac{dL}{dx} = \frac{dL}{dy} \cdot \frac{dy}{dx} $$ 这一过程从输出层开始,逐层向前传播,确保每一层的参数都能根据其对最终损失的影响进行更新。这种从后向前的梯度传播机制使得神经网络能够高效地进行参数优化。 ### 自动微分与现代深度学习框架 现代深度学习框架(如TensorFlow、PyTorch)实现了自动微分(Automatic Differentiation),可以自动构建计算图并跟踪所有操作,使得用户只需定义前向传播过程,框架会自动处理反向传播的梯度计算。这种方式极大地简化了神经网络的实现过程,提升了开发效率[^2]。 以下是一个简单的PyTorch代码示例,展示了如何使用自动微分进行反向传播: ```python import torch # 定义可学习参数 w = torch.tensor([1.0], requires_grad=True) b = torch.tensor([0.5], requires_grad=True) # 前向传播 x = torch.tensor([2.0]) y_pred = w * x + b y_true = torch.tensor([3.0]) # 计算损失 loss = (y_pred - y_true) ** 2 # 反向传播 loss.backward() # 打印梯度 print("w的梯度:", w.grad) print("b的梯度:", b.grad) ``` ### 梯度更新与优化 在获得梯度后,模型通过优化器(如SGD、Adam等)对参数进行更新。以随机梯度下降(SGD)为例,其更新规则为: $$ w_{t+1} = w_t - \eta \cdot g_t $$ 其中,$ g_t $ 是当前批次的梯度估计值。Adam优化器在此基础上引入动量和自适应学习率机制,能够更有效地处理非凸优化问题。 ### 总结 反向传播算法通过链式法则高效地计算神经网络中各参数的梯度,是深度学习模型训练的核心机制。现代框架通过自动微分技术简化了其实现,使得开发者能够专注于模型设计与调优。反向传播不仅在理论层面具有坚实的数学基础,也在实际应用中展现出强大的优化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值