【小白入门 AI 必备】一文吃透 Transformer、BERT 和 GPT 大模型!

在当今这个科技飞速发展的时代,AI 已经成为了最热门的话题之一。无论是在智能语音助手、智能翻译,还是在智能写作、图像生成等领域,AI 都展现出了令人惊叹的能力。而在 AI 的众多技术中,Transformer、BERT 和 GPT 大模型无疑是最为耀眼的明星。对于想要入门 AI 的小白来说,理解这些模型是开启 AI 大门的关键一步。接下来,就让我们一起深入了解一下这些神奇的模型吧。

1、Transformer:开启新时代的架构

诞生背景

在 Transformer 出现之前,循环神经网络(RNN)及其变体(如 LSTM、GRU)在自然语言处理(NLP)领域占据主导地位。RNN 能够处理序列数据,但其存在一个严重的问题 —— 难以捕捉长距离依赖关系,且训练速度慢,因为它需要顺序处理序列中的每个元素,无法充分利用 GPU 的并行计算能力。为了解决这些问题,2017 年,谷歌团队在论文《Attention is All You Need》中提出了 Transformer 模型。

核心架构

Transformer 主要由编码器(Encoder)和解码器(Decoder)两大部分组成。

  • 编码器:负责对输入序列进行编码。它由多个相同的层堆叠而成,每一层包含两个子层。第一个子层是多头自注意力机制(Multi - Head Self - Attention),它能够让模型在处理序列时,同时关注不同位置的信息,捕捉全局依赖关系。例如,当处理句子 “我喜欢吃苹果,苹果富含维生素” 时,模型能通过自注意力机制明确 “苹果” 在不同位置的语义关联。第二个子层是前馈神经网络(Feed - Forward Neural Network),对每个位置的表示进行独立的非线性变换,进一步提取特征。

  • 解码器:用于生成输出序列。同样由多个层堆叠而成,每一层包含三个子层。除了多头自注意力机制和前馈神经网络外,还多了一个编码器 - 解码器注意力机制(Encoder - Decoder Attention),该机制使解码器能够关注编码器的输出,结合输入信息进行生成。例如在机器翻译任务中,解码器参考编码器对源语言的编码结果,生成目标语言的译文。

优势与影响

Transformer 的优势十分显著。首先,它实现了并行计算,大大提高了训练效率,不再受限于 RNN 的顺序计算。其次,自注意力机制能有效捕捉长距离依赖关系,让模型对上下文的理解更加深入。Transformer 的出现,彻底改变了 NLP 领域的研究格局,成为后续众多先进模型的基础架构,为 AI 的发展开辟了新的道路。

img

2、BERT:双向理解的语言模型

基本概念​
BERT(Bidirectional Encoder Representations from Transformers),即基于 Transformer 的双向编码器表征,是谷歌在 2018 年推出的预训练语言模型。与传统的单向语言模型不同,BERT 能够同时利用上下文信息进行理解,这使得它在各种 NLP 任务中表现出色。

img

预训练与微调

  • 预训练阶段:BERT 采用了两种创新的预训练任务。一是掩码语言模型(Masked Language Model, MLM),它会在输入文本中随机掩盖一些词,然后让模型去预测这些被掩盖的词。例如,对于句子 “我 [MASK] 吃苹果”,模型需要根据上下文推断出 [MASK] 处应该是 “喜欢”。这种方式让模型能够学习到双向的上下文信息。二是下一句预测(Next Sentence Prediction, NSP),判断两句话在原文中是否是连续的。比如给定 “我今天去了超市” 和 “我买了很多食物”,模型要能判断出这两句话很可能是连续的。通过这两个预训练任务,BERT 在大规模无监督数据上进行训练,学习到丰富的语言知识和语义表示。

  • 微调阶段:在完成预训练后,BERT 可以针对特定的下游任务进行微调。例如在文本分类任务中,在 BERT 模型的输出层添加一个全连接层,然后在有标注的文本分类数据上进行训练,调整模型参数,使其适应文本分类任务。

实际应用

BERT 在众多 NLP 任务中都取得了优异的成绩。在文本分类任务中,如情感分析,它能够准确判断文本所表达的情感是积极、消极还是中性;在命名实体识别(NER)任务中,能够识别出文本中的人名、地名、组织机构名等实体;在问答系统中,能够理解用户的问题,并从给定的文本中找到准确的答案。例如,在智能客服场景中,BERT 可以快速理解用户咨询的问题,并从知识库中检索出合适的回答。

3、GPT:强大的文本生成模型

发展历程

GPT(Generative Pre - trained Transformer)是 OpenAI 在 2018 年推出的生成式预训练模型,并且随着版本的不断迭代,从 GPT - 1 发展到 GPT - 4,其性能和能力不断提升。GPT - 1 开启了预训练 - 微调的两阶段模式,在自然语言处理任务中取得了不错的效果。之后的 GPT - 2 进一步扩大模型规模,展示出了更强大的语言生成能力。GPT - 3 更是以其超大的参数规模和卓越的性能引起了广泛关注,而 GPT - 4 在多模态等方面又有了新的突破。

架构与工作原理

GPT 基于 Transformer 的解码器架构。与 BERT 不同,它采用单向(从左到右)的自注意力机制,专注于文本生成任务。在生成文本时,GPT 通过逐步预测下一个词来生成连贯的文本。例如,当给定开头 “今天天气真好,我打算”,GPT 会根据学习到的语言模式和语义信息,生成类似 “今天天气真好,我打算去公园散步” 这样的文本。它在大规模的文本数据上进行预训练,学习语言的语法、语义和语用等知识,然后可以通过微调适应各种特定的文本生成任务,如文章撰写、故事创作、对话系统等。
img
实际应用场景

  • 文本创作:可以帮助撰写新闻报道、小说、论文等各种文本内容。例如,一些媒体机构使用 GPT 辅助记者生成新闻稿件的初稿,提高写作效率。

  • 对话系统:构建智能客服、聊天机器人等。像一些在线客服平台,利用 GPT 技术能够快速响应用户的咨询,提供准确的回答,提升用户体验。

  • 代码生成:根据自然语言描述生成相应的代码片段,帮助程序员提高编程效率,例如在开发过程中,根据功能需求描述自动生成部分代码。

四、三者之间的关系与对比

关系梳理

Transformer 是一种架构基础,BERT 和 GPT 都是在 Transformer 架构的基础上发展而来的。BERT 主要基于 Transformer 的编码器部分进行改进和优化,专注于自然语言理解任务;而 GPT 则基于 Transformer 的解码器部分进行扩展,侧重于文本生成任务。可以说,Transformer 为 BERT 和 GPT 的诞生提供了土壤,而后两者在不同方向上对 Transformer 架构进行了成功的应用和创新。

对比分析

  • 方向性:BERT 是双向的,能够同时关注输入文本的前后文信息,在理解上下文复杂语义关系方面表现出色;而 GPT 是单向的,主要关注前文信息来生成后续内容,更擅长文本生成的连贯性。

  • 应用场景:BERT 适用于需要深入理解文本含义的任务,如文本分类、命名实体识别、问答系统等;GPT 则在各种文本生成任务中表现突出,如文章写作、对话生成、代码生成等。

  • 性能表现:在理解类任务上,BERT 通常优于 GPT;但在生成类任务上,GPT 具有明显优势。不过随着 GPT 模型规模的不断扩大和技术的改进,它在理解任务上的表现也在逐渐提升。

对于想要入门 AI 的小白来说,Transformer、BERT 和 GPT 大模型虽然看似复杂,但通过以上深入浅出的介绍,相信你已经对它们有了一个初步的认识。这些模型是 AI 领域的重要基石,理解它们将为你进一步学习和探索 AI 技术打下坚实的基础。在未来的学习和实践中,你可以通过实际操作和项目应用,更加深入地理解和掌握这些模型的原理与应用,开启属于自己的 AI 探索之旅。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值