2025 年 LLM 面试 50 题(附答案):大模型求职必备,看完直接上考场

在当前人工智能飞速发展的时代,大语言模型(LLM)相关领域成为了求职市场的热门焦点。众多企业对 LLM 人才求贤若渴,然而求职者要想在激烈的竞争中脱颖而出,成功斩获心仪 offer,就必须全面且深入地掌握 LLM 的核心知识与关键技术。为助力各位有志于投身大模型领域的朋友高效备考,我们精心整理了 50 道 LLM 面试题,并附上详细答案,让您看完即可信心满满奔赴考场。

请添加图片描述

一、核心架构与基本概念

1. Token 化(tokenization)包含哪些内容,为什么它对 LLM 至关重要?

Token 化是将文本分解为更小单元(称为 token)的过程,这些单元可以是单词、词的一部分或字符。例如,单词 “artificial” 可以被分解为 “art”、“ific” 和 “ial”。这是一个关键步骤,因为 LLM 处理的是这些 token 的数值版本,而不是原始文本。通过 token 化,模型可以处理多种语言,处理稀有词汇或不在其词汇表中的词汇,并保持词汇表大小的可管理性,这反过来提高了计算速度和模型的有效性。

2. 注意力机制在 Transformer 模型中如何运作?

注意力机制使 LLM 能够在生成或分析文本时,对序列中的不同 token 分配不同的重要性级别。它通过计算查询(query)、键(key)和值(value)向量之间的相似性分数来确定这些重要性级别,通常通过点积运算来专注于最相关的 token。这一功能增强了模型理解上下文的能力,使 Transformer 在自然语言处理任务中非常有效。

3. LLM 中的上下文窗口是什么,为什么它很重要?

上下文窗口是 LLM 能够同时处理的 token 数量,它本质上定义了模型理解或创建文本的短期记忆。更大的窗口(例如 32000 个 token)让模型能够考虑更多上下文,在摘要等活动中产生更连贯的结果。另一方面,更大的窗口也意味着更高的计算成本。在窗口大小和运行效率之间找到正确的平衡是在实际场景中使用 LLM 的关键。

4. 序列到序列模型是什么,它们在哪里应用?

序列到序列(Seq2Seq) 模型旨在将输入序列转换为输出序列,输出序列的长度通常可以不同。它们应用于各种场景,如机器翻译(例如,从英语到德语)、文本摘要和聊天机器人,其中输入和输出的长度经常不同。

5. 嵌入(embeddings)是什么,它们在 LLM 中如何初始化?

嵌入是在连续空间中代表 token 的紧凑向量,捕获它们的语义和句法特征。在 LLM 中,嵌入通常在模型训练开始时随机初始化,然后在训练过程中通过反向传播进行调整,以更好地表示 token 的含义,从而提高模型在各种自然语言处理任务中的性能。

6. LLM 如何处理词汇外(out - of - vocabulary, OOV)单词?

常见的处理方式有几种。一种是使用子词分割,将 OOV 单词拆分成更小的、在词汇表中的子词单元。例如字节对编码(BPE),通过不断合并出现频率高的字节对来构建子词表,当遇到 OOV 单词时,将其分解为子词。另一种方式是使用通用的未知词标记(如 “”)来替代 OOV 单词,但这种方法可能会损失部分信息。一些先进的模型还会利用上下文信息,通过周围已知单词的嵌入和模型对上下文的理解来近似推断 OOV 单词的含义。

7. Transformer 如何改进传统的 Seq2Seq 模型?

传统的 Seq2Seq 模型通常使用循环神经网络(RNN)或其变体(如 LSTM、GRU),存在梯度消失或梯度爆炸问题,且处理长序列时效率较低。Transformer 摒弃了循环结构,采用自注意力机制,能够并行计算,大大提高了训练速度。它可以直接捕捉序列中任意位置之间的依赖关系,无需像 RNN 那样顺序处理,使得模型对长距离依赖的处理能力更强。多头注意力机制进一步增强了模型捕捉不同类型信息的能力,位置编码则解决了输入序列中单词顺序的问题,使模型能够感知单词的位置信息。

8. 位置编码是什么,为什么要使用它们?

位置编码是为输入序列中的每个位置分配一个唯一编码的方法。在 Transformer 模型中,自注意力机制本身无法捕捉单词的顺序信息,因为它平等地对待序列中的每个 token。位置编码通过将位置信息编码到输入向量中,使模型能够理解单词在序列中的相对位置。常见的位置编码方式有正弦位置编码和学习型位置编码。正弦位置编码利用正弦和余弦函数的特性生成位置编码,具有可扩展性和良好的数学性质;学习型位置编码则是在模型训练过程中学习得到位置编码,能更好地适应具体任务的数据特征。

9. 多头注意力(multi - head attention) 是什么,它如何增强 LLM?

多头注意力机制是在 Transformer 模型中使用的一种技术,它通过多个不同的 “头” 并行计算注意力。每个头使用不同的线性变换将输入投影到不同的子空间,从而捕捉到输入序列中不同方面的信息。然后,将这些头的输出拼接起来,并通过另一个线性变换进行整合。多头注意力增强 LLM 的方式在于,它允许模型同时关注输入序列的不同部分,从多个角度提取信息,提高了模型对复杂语言结构和语义关系的理解能力。例如,在翻译任务中,不同的头可以分别关注源语言句子中的语法结构、词汇语义以及与目标语言相关的信息,从而提升翻译的准确性和流畅性。

10. Transformer 如何解决梯度消失问题?

Transformer 采用了残差连接(skip connection)和层归一化(layer normalization)技术来解决梯度消失问题。残差连接允许梯度在网络中直接传播,当梯度在反向传播过程中经过多个层时,即使某些层的梯度变得很小,残差连接也能使梯度绕过这些层,直接传递到前面的层,避免梯度在传播过程中过度衰减。层归一化则对每一层的输入进行归一化处理,使数据分布更加稳定,有助于梯度的有效传播。它将每一层神经元的输入归一化到均值为 0、方差为 1 的分布,减少了由于数据分布变化导致的梯度不稳定问题,使得模型在训练过程中更容易收敛,从而有效缓解了梯度消失问题,使得 Transformer 能够训练更深的网络结构。

11. 在 Transformer 中编码器和解码器有何不同?

编码器的主要作用是将输入序列(如文本句子)编码为一个连续的向量表示,这个向量包含了输入序列的语义信息。它通过一系列的自注意力层和前馈神经网络层,对输入进行逐步的特征提取和变换,将输入的 token 序列转换为一个固定维度的上下文向量。编码器在处理输入时,只关注输入序列本身,不依赖于输出。

解码器则用于根据编码器的输出和已生成的部分输出来生成完整的输出序列。它在自注意力层中不仅关注当前已生成的输出 token 之间的关系,还通过交叉注意力机制关注编码器的输出,以便利用输入序列的信息来指导输出的生成。解码器在生成输出时,是一个逐步生成的过程,每次生成一个 token,直到生成完整的输出序列(例如在机器翻译中生成目标语言句子)。总的来说,编码器负责将输入编码成语义表示,解码器负责基于编码器输出和已生成内容生成最终输出。

12. 什么定义了大型语言模型(LLM)?

大型语言模型(LLM)是在广泛文本数据集上训练的 AI 系统,能够理解和产生类似人类的语言。其关键特征包括大规模的参数数量,通常在数十亿甚至数万亿级别,这使得模型能够学习到丰富的语言模式和知识。它们在多样化的文本数据上进行预训练,涵盖互联网文本、书籍、论文等多种来源,从而具备广泛的语言理解和生成能力。LLM 可以执行多种自然语言处理任务,如文本生成、问答、翻译、摘要等,且无需针对每个具体任务进行大量的特定训练,通过少量的提示工程或微调就能适应不同任务需求,展现出强大的泛化能力。

13. LoRA 和 QLoRA 在 LLM 微调中有什么区别?

LoRA(Low - Rank Adaptation)是一种低秩自适应方法,它通过在预训练模型的基础上添加少量可训练的低秩矩阵,来对模型进行微调。在微调过程中,大部分原始模型参数保持不变,仅更新这些低秩矩阵的参数,大大减少了需要训练的参数数量,降低了计算成本和内存需求。这使得在有限资源下也能对大规模模型进行高效微调,且在一些任务上能达到与全量微调相近的性能。

QLoRA 则是在 LoRA 基础上进一步结合了量化技术。它不仅使用低秩矩阵进行参数微调,还对模型参数进行量化处理,将 32 位的浮点数参数转换为更低位的表示形式(如 8 位、4 位),从而在保持模型性能的前提下,进一步减少内存占用,加速推理过程。在微调时,QLoRA 能够以更少的内存消耗对模型进行训练,尤其适用于在资源受限的设备或环境中对 LLM 进行高效微调与部署。

14. LLM 如何在微调期间避免灾难性遗忘?

为了在微调期间避免灾难性遗忘,一种方法是采用多任务微调,即在微调目标任务数据的同时,混合少量预训练任务的数据或其他相关辅助任务的数据,让模型在学习新任务时也能回顾之前学习的知识,维持对原有知识的记忆。另一种方法是使用正则化技术,如在微调过程中对模型参数添加约束,防止参数更新过大而遗忘原始知识,常见的有 L1、L2 正则化。还有一种是弹性权重巩固(EWC)方法,通过计算每个参数在预训练任务中的重要性,在微调时对重要参数的更新施加约束,使其不易被过度改变,从而保留预训练时学到的关键知识,减少灾难性遗忘的发生。

15. 模型蒸馏是什么,它如何使 LLM 受益?

模型蒸馏是一种将一个复杂的大模型(教师模型)的知识迁移到一个较小的模型(学生模型)的技术。在蒸馏过程中,学生模型通过学习教师模型的输出(软标签)而不是原始的硬标签(如分类任务中的类别标签)来进行训练。教师模型的软标签包含了更多关于输入数据的语义信息,例如在分类任务中,软标签的概率分布可以体现不同类别之间的相对关系。通过模仿教师模型的软标签,学生模型能够学到更丰富的知识,尽管其参数规模较小,但在某些任务上也能达到接近教师模型的性能。对于 LLM 来说,模型蒸馏可以将大型、复杂且计算成本高的 LLM 的知识迁移到小型、高效的模型中,使得小型模型在推理时能够以更低的计算资源消耗和更快的速度运行,同时保持一定的性能水平,有利于 LLM 在资源受限的设备(如移动设备、边缘设备)上的部署和应用。

16. 什么是超参数(hyperparameter),为什么它很重要?

超参数是在模型训练之前需要手动设置的参数,它们不是通过模型训练过程学习得到的。例如在神经网络中,学习率、隐藏层节点数、层数、正则化系数等都是超参数。超参数之所以重要,是因为它们对模型的性能和训练过程有着重大影响。合适的超参数设置可以使模型快速收敛到一个较好的解,提高模型在训练集和测试集上的准确性和泛化能力。如果超参数设置不当,可能导致模型训练不稳定,如梯度消失或梯度爆炸,或者模型出现过拟合或欠拟合现象。例如,学习率过大可能使模型在训练过程中跳过最优解,无法收敛;学习率过小则会导致训练速度极慢,需要更多的训练时间和计算资源。因此,在模型训练之前,通常需要通过实验和调参方法(如网格搜索、随机搜索、贝叶斯优化等)来寻找最优的超参数组合,以提升模型性能。

17. 束搜索(beam search)相比贪婪解码如何改善文本生成?

贪婪解码在文本生成过程中,每一步都选择当前概率最大的 token 作为输出。这种方法速度快,但可能陷入局部最优解,因为它只考虑当前步骤的最优选择,而没有考虑后续可能的更好路径。例如在机器翻译中,可能会生成一个局部看似合理,但整体不符合语法或语义的句子。

束搜索则是在每一步保留概率最高的 k 个候选 token(k 称为束宽),而不是只选择一个。随着生成步骤的推进,根据这些候选 token 继续生成下一个 token,并计算所有可能路径的得分(通常基于语言模型的概率得分)。最终,从所有可能的路径中选择得分最高的路径作为生成结果。通过保留多个候选路径,束搜索能够在一定程度上探索更广阔的解空间,避免过早陷入局部最优,从而生成质量更高、更符合整体语义和语法的文本。例如在诗歌生成中,贪婪解码可能生成一些简单、单调的诗句,而束搜索有更大机会生成意境优美、逻辑连贯的诗歌。不过,束搜索由于需要计算和存储多个候选路径,计算成本和时间复杂度会高于贪婪解码。

18. 温度设置在文本生成中有什么作用,如何选择合适的温度值?

在文本生成中,温度(temperature)是一个用于调整生成文本随机性的参数。它通过对语言模型输出的概率分布进行缩放来影响生成结果。具体来说,温度值越高,生成的文本越随机,因为它会使概率分布更加平滑,各个 token 被选择的概率差异变小,模型更有可能选择一些不太常见但并非不可能的 token,从而增加生成文本的多样性。例如在创意写作任务中,较高的温度设置可以生成更具想象力和创新性的文本。

相反,温度值越低,生成的文本越确定性,概率分布更集中在概率最高的 token 上,模型倾向于选择最常见、最可能的 token,生成的文本更加保守、稳定,通常在对文本准确性和连贯性要求较高的场景中使用,如正式的新闻报道生成。

选择合适的温度值需要根据具体任务和需求来确定。一般来说,可以通过实验进行尝试。如果生成的文本过于重复、缺乏新意,可以适当提高温度值;如果生成的文本过于杂乱、不符合逻辑,则降低温度值。在一些情况下,也可以先在训练数据上进行初步测试,观察不同温度值下模型生成文本的质量,然后在实际应用中根据用户反馈进一步调整,以找到既能满足任务要求又能提供足够多样性或稳定性的温度值。例如在故事创作中,可能先尝试温度值为 0.8,若生成的故事太平淡,可将温度提高到 1.2 左右;若生成的故事过于离奇,再降低到 0.6 进行调整。

19. top - k 采样和 top - p 采样在文本生成中有何不同?

top - k 采样是在文本生成时,从语言模型输出的概率分布中,只考虑概率最高的 k 个 token,然后在这 k 个 token 中按照它们的概率进行采样来选择下一个生成的 token。这种方法通过限制选择范围,避免了选择那些概率极低的 token,从而减少了生成不合理文本的可能性,增加了生成文本的质量和稳定性。例如在生成对话回复时,能够使回复更符合常见的语言表达。

top - p 采样(或核采样)则从概率组合超过某个阈值 “p”(如 0.95)的 token 群体中选择,这意味着群体大小可以根据上下文而变化。top - p 采样提供更大的适应性,它在保证生成文本具有一定多样性的同时,也能确保生成的文本逻辑合理。因为它考虑了更多概率相对较高的 token,而不仅仅局限于固定数量的 k 个 token,使得模型在不同的上下文中能够灵活地选择合适的 token 进行生成。例如在创意写作中,top - p 采样可以生成既新颖又连贯的文本。总的来说,top - k 采样更侧重于固定数量的高概率 token 选择,而 top - p 采样更注重根据概率累积阈值动态选择 token 群体,两者在不同的应用场景中各有优势。

20. 为什么提示工程对 LLM 性能至关重要?

提示工程是创建特定输入以从 LLM 获得期望响应的实践。在零样本或少样本场景中,由于模型没有针对特定任务进行大量训练,提示工程就显得尤为关键。通过精心设计提示,可以引导模型利用其在预训练过程中学习到的广泛知识来执行任务。例如在翻译任务中,通过在提示中明确指定源语言和目标语言以及翻译要求,模型能够更好地理解任务意图,给出更准确的翻译结果。在文本分类任务中,合理的提示可以帮助模型准确识别文本的类别特征。提示工程还可以控制模型生成文本的风格、长度等。比如要求模型以正式、学术的风格生成一篇摘要,或者限制生成文本的字数。良好的提示工程能够挖掘出模型的最大潜力,使模型在无需大量微调的情况下,就能在各种任务中表现出较好的性能,因此对 LLM 的实际应用性能至关重要。

21. 检索增强生成(RAG)包含哪些步骤?

检索增强生成(RAG)主要包含以下步骤:首先是检索步骤,当接收到用户输入时,系统会根据输入内容从外部知识库(如文档数据库、网页索引等)中检索相关信息。这一步通常使用信息检索技术,如基于关键词匹配、向量相似度计算等方法,从海量的文档中筛选出与输入相关度较高的文档或文本片段。

然后是整合步骤,将检索到的相关信息与原始输入进行整合,形成一个新的输入上下文提供给 LLM。这个新的上下文包含了更多与任务相关的信息,有助于模型更好地理解任务和生成更准确、更有依据的输出。

最后是生成步骤,LLM 基于整合后的输入上下文进行文本生成,利用检索到的信息来指导和约束生成过程,从而生成更符合实际需求、更具可靠性的文本。例如在问答任务中,通过 RAG,模型可以从知识库中获取准确的知识来回答用户的问题,避免依赖模型自身可能存在的过时或错误信息。

22. RAG 如何提升 LLM 的事实准确性?

RAG 通过引入外部可靠的知识库,让 LLM 在生成回答时能够参考具体的事实信息,而非仅依赖模型预训练时学到的可能存在偏差或过时的知识。当模型需要生成涉及事实性内容的回答时,RAG 会先从知识库中检索出相关的事实依据,然后基于这些依据进行生成。例如在回答 “2024 年奥运会举办地” 这类问题时,RAG 能快速检索到最新的准确信息,确保模型生成的答案符合事实,有效减少了 LLM 因知识更新不及时或记忆偏差导致的幻觉现象,从而显著提升事实准确性。

23. 什么是提示链(chain - of - thought prompting),它适用于哪些场景?

提示链是一种引导 LLM 逐步推理的提示技术,通过在提示中要求模型 “逐步思考”“分步骤解答”,让模型在生成最终答案前先输出中间的推理过程。这种方式模拟了人类解决复杂问题时的思维过程,能帮助模型理清逻辑,减少错误。它适用于需要多步推理的场景,如数学应用题求解(例如 “一个商店有 50 个苹果,卖出 23 个,又进货 18 个,现在有多少个?”)、逻辑推理题(如 “如果 A 比 B 大,B 比 C 大,那么 A 和 C 谁大?”)、复杂的科学问题分析等,在这些场景中,提示链能显著提升模型的推理准确性。

二、训练与优化

24. 预训练、微调(fine - tuning)和提示调优(prompt tuning)的核心区别是什么?

预训练是在大规模通用文本数据上训练模型,让模型学习语言的基本规律、知识和模式,形成通用的语言理解和生成能力,此时模型不针对特定任务。微调则是在预训练模型的基础上,使用特定任务的数据集进一步训练,更新模型参数以适应具体任务,能让模型在该任务上表现更优,但需要较多的任务数据且可能影响模型的通用性。提示调优是通过设计特定的提示模板或添加可训练的提示向量,在不改变预训练模型参数的情况下,引导模型适应新任务,仅训练少量提示相关参数,数据需求少,能较好保留模型通用性,适用于小样本任务场景。

25. 什么是对比学习(contrastive learning),它在 LLM 训练中有何作用?

对比学习是一种通过学习样本之间的相似性和差异性来训练模型的方法。在 LLM 训练中,通常会构建正样本对(语义相似的文本,如同一内容的不同表述)和负样本对(语义不同的文本),让模型学习区分它们,使语义相似的文本在向量空间中距离更近,语义不同的距离更远。这有助于模型更好地捕捉文本的语义特征,提升对文本语义的理解和表示能力,进而在文本相似度计算、检索、聚类等任务中表现更出色,同时也能增强模型的泛化能力。

26. LLM 训练中使用的自监督学习目标有哪些?

常见的自监督学习目标包括掩码语言建模(MLM),即随机掩盖输入文本中的部分 token,让模型预测被掩盖的 token,如 BERT 采用此目标;因果语言建模(CLM),要求模型根据前文预测下一个 token,适用于生成式模型如 GPT 系列;还有句子顺序预测(SOP),判断两个句子是否是连续的上下文;以及替换 token 检测(RTD),识别输入中被替换的 token 等。这些目标无需人工标注数据,能充分利用海量无标注文本训练模型,学习语言规律。

27. 什么是混合精度训练,它如何加速 LLM 训练?

混合精度训练是同时使用不同精度的数值格式(如 32 位浮点数和 16 位浮点数)进行模型训练的技术。在训练中,对于对精度要求不高的计算(如激活值、梯度等)使用低精度格式,而对关键参数(如权重更新)使用高精度格式。这样能减少内存占用,使模型可以处理更大的批次大小,同时降低计算量,加快 GPU 等硬件的计算速度,从而显著缩短 LLM 的训练时间,在保证模型性能基本不受影响的前提下大幅提升训练效率。

28. 如何解决 LLM 训练中的过拟合问题?

解决过拟合可采用多种方法:增加训练数据量,让模型接触更多样的样本;使用正则化技术,如 L2 正则化在损失函数中添加参数平方项,Dropout 在训练时随机丢弃部分神经元;采用早停策略,当验证集性能不再提升时停止训练;使用数据增强,对文本数据进行同义词替换、句子重排等处理,增加数据多样性;选择更简单的模型结构或减少模型参数规模,降低模型复杂度等。例如在情感分析任务中,若模型在训练集准确率很高但验证集低,可通过增加不同领域的情感文本数据或加入 Dropout 层来缓解过拟合。

29. 批量大小(batch size)对 LLM 训练有什么影响?

批量大小过小时,每次训练迭代使用的样本少,梯度估计方差大,训练不稳定,收敛速度慢,但内存消耗小。批量大小过大时,梯度估计更稳定,训练速度快(可并行处理更多样本),但内存占用高,可能导致模型泛化能力下降(过度依赖批量内样本的平均特征),且学习率需相应调整以避免训练不稳定。例如在训练小型模型时,可用较小批量(如 32);训练大型 LLM 时,在硬件允许情况下用较大批量(如 128 或 256),同时配合学习率调度策略。

30. 学习率调度(learning rate scheduling)有哪些常见策略?

常见策略包括:常数学习率,训练过程中保持学习率不变,简单但可能后期收敛慢;阶梯式衰减,在指定的训练轮次后按比例降低学习率(如每 10 轮衰减为原来的 0.1);余弦退火,学习率随训练轮次按余弦函数曲线逐渐降低,能在训练后期精细调整参数;线性衰减,从初始学习率线性降至 0;自适应调度(如 Adam 的学习率调整),根据梯度动态调整。例如在 LLM 预训练初期,可用较大学习率快速更新参数,后期用衰减策略精细优化。

31. 什么是梯度累积(gradient accumulation),它的作用是什么?

梯度累积是在训练时,将多个小批次的梯度累积起来,当累积到一定数量后再进行一次参数更新。这相当于在不增加单批次内存占用的情况下,模拟了更大的批量大小。其作用是解决硬件内存不足无法使用大批次训练的问题,让模型能在有限资源下获得与大批次训练相近的效果,同时保持训练的稳定性,尤其适用于训练参数规模大的 LLM。

32. LLM 的训练数据需要满足哪些基本要求?

LLM 的训练数据需满足多样性,涵盖不同领域(如新闻、书籍、论文、对话等)、语言、风格的文本,以保证模型的泛化能力;准确性,尽量避免包含错误信息、偏见或虚假内容,减少模型学习不良知识;规模足够大,为模型提供充足的学习素材;时效性,对于需要关注最新信息的模型,需包含较新的数据;还需符合伦理规范,不包含违法、暴力、歧视性内容,保护数据隐私。

33. 数据清洗在 LLM 训练中的关键步骤有哪些?

关键步骤包括去重,去除重复的文本数据,避免模型过度学习重复内容;过滤低质量文本,如包含大量乱码、无意义字符或语法错误严重的文本;去除有害信息,如暴力、仇恨言论等;标准化处理,统一文本格式(如大小写、标点符号)、进行拼写纠错;可能还包括语言识别与过滤,保留目标语言数据;以及领域筛选,根据模型应用场景筛选相关领域数据等。例如在训练医疗领域 LLM 时,需重点过滤非医疗领域的无关数据和医疗相关的错误信息。

三、评估与性能

34. 评估 LLM 的困惑度(perplexity)是什么,它有什么局限性?

困惑度是衡量语言模型预测文本能力的指标,值越低表示模型对文本的预测越准确。它通过计算模型对测试集中每个 token 的预测概率的倒数的几何平均值得到。局限性在于,它仅反映模型对文本序列的预测能力,与人类对文本质量的判断(如连贯性、相关性)不完全一致,可能出现困惑度低但生成文本语义不合理的情况;且对长文本的评估不够全面,也无法衡量模型在特定任务(如翻译、问答)上的性能。

35. 什么是 ROUGE 和 BLEU,它们分别适用于哪些评估场景?

ROUGE(Recall - Oriented Understudy for Gisting Evaluation)主要用于评估文本摘要任务,通过计算生成摘要与参考摘要之间 n - gram(如单字、双字)的重叠度来衡量摘要质量,注重召回率。BLEU(Bilingual Evaluation Understudy)常用于机器翻译评估,计算翻译结果与参考译文的 n - gram 匹配率,兼顾精确率,适用于评估翻译的准确性和流畅性。

36. 如何评估 LLM 的推理能力?

可通过设计专门的推理任务数据集(如数学推理数据集 GSM8K、逻辑推理数据集 LogiQA)让模型解答,根据正确率评估;也可采用提示链技术,观察模型的中间推理步骤是否合理;还可进行对比评估,让模型解决不同难度层级的推理问题,分析其在复杂推理上的表现;此外,人工评估模型推理过程的逻辑性和严谨性也是重要方式。

37. 人类评估在 LLM 性能评估中的不可替代性体现在哪里?

人类评估能捕捉 LLM 生成内容的细微语义、情感、连贯性和伦理合规性等机器指标难以量化的方面。例如在评估诗歌的文学性、对话的自然度、回答的社会价值观导向时,人类能凭借主观理解和经验做出更全面准确的判断,弥补机器评估在复杂语义和人文因素上的不足,因此在 LLM 性能评估中具有不可替代的作用。

38. LLM 的 “幻觉”(hallucination)指什么,如何减轻这一现象?

“幻觉” 指 LLM 生成看似合理但与事实不符的内容。减轻方法包括使用 RAG 引入外部事实依据;在训练中增加事实性数据,强化模型对事实的记忆;采用基于检索的生成策略,让模型生成时参考可靠来源;通过提示工程引导模型谨慎生成不确定内容(如 “对于不确定的信息,注明‘可能’”);以及在评估中加入幻觉检测,对模型输出进行事实核查并反馈优化等。

39. 如何衡量 LLM 的计算效率,有哪些优化方向?

衡量计算效率可通过每秒处理的 token 数、训练或推理所需的计算资源(如 GPU 小时数)、内存占用量等指标。优化方向包括模型压缩(如量化、剪枝),减少参数规模;使用高效的计算框架和硬件(如 TensorRT 加速、专用 AI 芯片);采用模型并行和数据并行等分布式训练 / 推理策略;优化算法(如更高效的注意力计算);以及动态批处理等,在保证性能的前提下提升计算效率。

四、伦理与安全

40. LLM 可能存在哪些偏见,如何减轻?

LLM 可能存在性别偏见(如将某些职业与特定性别关联)、种族偏见、地域偏见等,这些源于训练数据中包含的社会偏见。减轻方法包括在数据层面筛选和修正带有偏见的数据,平衡不同群体的表示;在训练中加入去偏目标,让模型学习公平的表示;采用偏见检测工具评估模型输出,针对性调整;以及在应用中设置偏见过滤机制,减少偏见内容的生成。

41. 如何确保 LLM 生成内容的安全性,避免有害输出?

可通过构建安全准则,在训练中使用包含安全与不安全示例的数据集,让模型学习识别和拒绝生成有害内容;采用对齐技术(如 RLHF,基于人类反馈的强化学习),使模型输出符合人类价值观;设置输入过滤,拦截包含恶意引导的提示;部署实时监控系统,对生成内容进行安全检测,及时过滤有害输出;并建立用户反馈机制,持续优化安全策略。

42. LLM 的隐私风险有哪些,如何防范?

隐私风险包括训练数据中可能包含的个人敏感信息(如姓名、电话、地址)被模型记忆并在生成时泄露;用户输入的隐私信息被模型学习或在推理中暴露。防范措施包括对训练数据进行匿名化处理(如去标识化、差分隐私技术);限制模型对敏感信息的记忆,采用隐私保护机器学习技术(如联邦学习);明确数据使用规范,保护用户数据;以及对模型输出进行敏感信息过滤等。

43. 什么是模型对齐(alignment),为什么它对 LLM 至关重要?

模型对齐是使 LLM 的目标和行为与人类的价值观、意图和需求保持一致的过程。它至关重要是因为未经对齐的 LLM 可能生成有害、不道德或不符合用户期望的内容,例如在用户询问有害方法时提供详细步骤。通过对齐,可确保 LLM 在发挥能力的同时,遵循伦理规范,安全、有益地为人类服务,避免产生负面影响。

44. RLHF(基于人类反馈的强化学习)在模型对齐中的作用是什么?

RLHF 通过收集人类对模型输出的反馈(如评分、排序),训练一个奖励模型,再用这个奖励模型通过强化学习微调 LLM,使模型生成更符合人类偏好的内容。在模型对齐中,它能将人类的价值观和期望转化为模型可学习的奖励信号,引导模型调整输出,使其更安全、有用、符合伦理,有效解决模型输出与人类需求不一致的问题。

五、前沿与应用

45. 多模态大模型(如结合文本与图像)与纯文本 LLM 的核心差异是什么?

核心差异在于输入输出模态,多模态模型能处理和生成文本、图像等多种模态数据,而纯文本 LLM 仅处理文本。多模态模型需要学习不同模态间的关联(如文本描述与图像内容的对应),拥有跨模态理解和生成能力,适用于图文生成、图像 captioning(图像描述)等任务;纯文本 LLM 专注于语言领域,在文本相关任务(如写作、翻译)上可能更精深。

46. LLM 在代码生成领域的典型应用和挑战是什么?

典型应用包括自动生成代码片段(如根据需求生成函数)、代码补全、代码调试、代码翻译(如将 Python 代码转为 Java)等。挑战在于生成代码的正确性(可能存在语法错误或逻辑漏洞)、可读性和可维护性;处理复杂项目的上下文依赖;适应不同编程语言和编码规范;以及生成代码的安全性(避免引入漏洞)等。

47. 什么是 MoE(Mixture of Experts)模型,它如何提升 LLM 性能?

MoE 模型包含多个 “专家” 子网络和一个路由机制,路由机制根据输入决定激活哪些专家子网络处理该输入。它通过让不同专家专注于不同领域或任务,在不显著增加计算量的情况下扩大模型容量(总参数多但每次激活的参数少),使模型能处理更复杂的任务,学习更丰富的知识,从而提升性能,尤其在大规模模型中能有效平衡参数规模和计算效率。

48. LLM 与知识图谱结合有哪些优势?

结合优势包括提升事实准确性,知识图谱提供结构化的事实知识,可作为 LLM 的外部事实依据;增强推理能力,知识图谱的关系结构能辅助 LLM 进行逻辑推理(如通过 “父子” 关系推理家族树);使模型生成的内容更具可解释性,可追溯到知识图谱中的具体条目;并能帮助模型更好地理解领域知识,在专业领域(如医疗、金融)表现更优。

49. 边缘设备部署 LLM 面临哪些挑战,有哪些解决方案?

挑战包括边缘设备内存和计算资源有限,难以运行大规模 LLM;模型推理能耗较高;实时性要求高。解决方案包括模型压缩(如量化至 4 位或 2 位、剪枝冗余参数);设计轻量级 LLM 架构(如 MobileBERT);采用知识蒸馏,将大模型知识迁移到小模型;利用边缘计算优化技术,如模型分片部署;以及硬件加速,使用专用边缘 AI 芯片等。

50. 2025 年 LLM 领域的前沿趋势可能有哪些?

2025 年可能的前沿趋势包括更高效的模型架构(如更优化的 MoE 结构),进一步平衡性能与计算成本;更强的多模态融合能力,实现文本、图像、音频、视频等无缝交互;更深度的个性化,模型能根据用户习惯和需求动态调整;更完善的伦理与安全机制,实现更可靠的部署;以及与其他技术(如机器人、物联网)的深度结合,拓展应用场景(如智能交互机器人、实时场景理解)等。

结尾

以上 50 道题涵盖了 LLM 的核心知识、技术细节、应用场景及前沿趋势,从基础概念到实际应用,从训练优化到伦理安全,全面覆盖了面试中可能涉及的重点内容。掌握这些知识,不仅能帮助你在面试中脱颖而出,更能为你在大模型领域的深入发展奠定坚实基础。希望这份面试题集能成为你求职路上的得力助手,祝你顺利斩获心仪的 LLM 相关岗位,在人工智能的浪潮中绽放光彩!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值