大模型不会用 MCP?正常!一文讲清 MCP 本质、工具调用流程,搭建 AI 智能体更省心

一、先理清:MCP究竟是什么?但大模型真的无需理解它

如今,在搭建AI智能体的“工具调用”环节中,“模型上下文协议(MCP)”已成为标配。不过,与多数人认知不同的是,你的大语言模型(LLM)完全没必要搞懂MCP到底是什么。

你或许听过“上下文工程”这一概念,简单来说,就是在与大模型交互时,为其提供“有价值的背景信息”,助力它更精准地回答问题。而要收集这些背景信息,就可以借助“工具调用”,让大模型能够调用一系列工具去获取数据或执行相应操作。


MCP的核心作用,其实是帮助AI智能体实现连接各类工具方式的“标准化”。但对大模型而言,“常规的工具调用”和“遵循MCP标准的工具调用”并无差异:它所能识别的,仅仅是“工具列表”(例如工具的名称、所需传递的参数等),至于背后是MCP在运作,还是其他方式在支撑,大模型既不知情,也不会在意。而这种“不知情”,恰恰是一件好事。

采用MCP后,你无需为每个工具编写“专属对接代码”,就能直接使用成千上万种工具。搭建一个涉及工具调用的AI智能体循环(比如“接收提问→调用工具→获取结果→生成回答”的流程)会变得异常简便,往往几乎不需要花费开发时间。请记住:调用工具的责任在于你(开发者),大模型仅负责生成“应该调用哪个工具、传递哪些参数”的指令片段


接下来,我将拆解清楚三件事:工具调用的实际运作方式、MCP的具体功能,以及这两者与“上下文工程”之间的关联。

二、工具调用:大模型仅负责“撰写指令”,不会“实际操作”

大模型能够理解“工具调用”的概念(有时也被称为“工具使用”或“函数调用”)。你要做的,就是将“工具列表”作为提示词的一部分传递给它,并且每个工具都必须清晰注明名称、用途以及所需的输入参数。随后,大模型会结合你的问题和这些工具信息,生成“应该调用哪个工具”的指令。

但有一个关键要点必须明确:大模型并不会“使用”工具。它不具备“原生调用工具”的能力,仅仅是能够生成一段“看似是函数调用”的文字而已。

直观了解:与大模型互动时的输入与输出流程

输入(传递给大模型的内容)输出(大模型生成的内容)
1. 指令(例如“协助用户解答问题,必要时调用工具”)
2. 用户的问题(例如“纽约当前的天气如何”)
3. 工具列表(每个工具需包含:名称、描述、输入参数)
1. AI回复(可能包含工具调用指令)
2. 若需调用工具:会标注出工具ID、工具名称以及对应的参数

从上述流程不难看出,大模型真正“看到”的,其实就是一系列文字信息,包括指令、历史对话记录以及工具列表。即便其生成的回复中包含工具调用内容,也只是一段文字。大模型并非真正“理解”这个工具,只是依据上下文“预测”出应该撰写怎样的调用指令。

实际案例更易理解

假设你向大模型提供一个名为get_weather(查询天气)的工具,该工具的参数为location(地点),之后向它提问:“华盛顿州西雅图的天气怎么样?”

大模型或许会生成如下内容:

{
  "tool_name": "get_weather",
  "parameters": {
    "location": "Seattle, WA"
  }
}

大模型能够写出这样的内容,完全依赖于你提供的“工具列表”和“问题”这两个上下文信息,但它根本不清楚如何“真正调用”get_weather工具,而且也无需知道。真正负责调用工具的是你的AI智能体程序:它会对大模型生成的“工具名称”和“参数”进行解析,进而调用实际的API或执行相关函数,获取结果(例如“温度为72华氏度,晴天”)后,再将该结果作为“新消息”传递给大模型。

完整工具调用流程解析(大模型仅参与第二步)

  1. 你的AI智能体程序 → 向大模型传递“工具列表 + 用户问题”(例如“工具:get_weather (location);问题:西雅图天气如何?”)
  2. 大模型 → 生成工具调用指令(例如“调用get_weather,参数为Seattle, WA”)
  3. 你的AI智能体程序 → 执行调用操作(调用查询天气的API),获取结果(例如{“temperature”: 72, “condition”: “sunny”})
  4. 你的AI智能体程序 → 将“之前的对话记录 + 工具获取的结果”传递给大模型
  5. 大模型 → 生成最终回答(例如“西雅图当前气温为72华氏度,天气晴朗”)

这种“分工模式”至关重要:大模型仅负责“预测文字内容”,而实际的“执行操作”全部由你的AI智能体系统来完成。理解了这一点,就能清楚MCP应该在整个流程中处于什么位置。

三、MCP:为开发者打造的“工具万能接口”,而非给大模型使用

“模型上下文协议(MCP)”,本质上是一种“标准化方法”,用于帮助你的AI智能体连接各类数据源,像工具、提示词、资源、示例等都包含在内。目前,MCP最常见的应用场景,就是简化“工具对接”流程:无需为每个工具编写“自定义格式的代码”,因为MCP已经设定好了统一的“数据格式”和“沟通方式”。你可以将它看作是工具领域的“USB-C接口”,只要工具支持MCP,就能通过同一个“接口”连接到你的AI智能体上。

MCP通常需要三个部分协同工作:

  • 宿主应用(例如聊天软件、代码编辑器Cursor等)
  • MCP客户端(宿主应用中自带的“连接器”)
  • 一个或多个MCP服务器(提供工具、提示词等资源的“仓库”)

但关键在于:你与大模型的互动方式丝毫没有改变。变化的只是“工具传递到大模型面前的方式”:你的AI智能体程序首先与MCP客户端进行沟通,接着客户端从对应的MCP服务器获取工具,最后将工具转换成大模型能够理解的格式(例如“工具名 + 参数”列表)。

加入MCP后,查询天气的流程会变化吗?(大模型毫无察觉)

依旧以询问“西雅图天气怎么样”为例,流程变为:

  1. MCP服务器 → 向MCP客户端提供“工具定义”(例如“MCP_get_weather (location)”)
  2. 你的AI智能体程序 → 将“工具列表 + 用户问题”传递给大模型(大模型看到的依旧是“get_weather (location)”,对MCP一无所知)
  3. 大模型 → 生成调用指令(例如“调用MCP_get_weather,参数为Seattle, WA”)
  4. 你的AI智能体程序 → 让MCP客户端调用MCP服务器上的工具,执行查询天气的操作,获取结果({“temperature”: 72, “condition”: “sunny”})
  5. 你的AI智能体程序 → 将结果传递给大模型,大模型生成最终回答

显而易见,对大模型来说,它所获取的工具列表、生成的调用指令,与不使用MCP时几乎没有差别。MCP带来的便利,全部体现在开发者身上:

  • 当AI智能体需要对接大量工具时,无需再应对“兼容不同格式”的难题;
  • 工具能够在不同项目中重复使用,无需重新编写代码;
  • 在对接新工具或新系统时,无需将整个AI智能体拆解后重新修改。

除非你在“工具列表”或“系统指令”中特意告知大模型“我们正在使用MCP”,否则它永远都不会知晓MCP的存在。毕竟,调用工具的责任在你,大模型只需负责撰写“调用指令”即可。

四、回归“上下文工程”:MCP是为你减轻负担,而非给大模型增加工作量

“上下文工程”的核心,就是为大模型“提供正确的信息”,促使它生成有价值的输出。这句话听起来简单,但实际上,它是搭建实用AI智能体系统过程中最为关键的一步。

你向大模型提出问题,本质上是向它传递一段“提示词”,大模型会根据这段文字,预测接下来应该生成什么样的内容。提示词质量越高(背景信息越准确、越全面),大模型给出的回答质量也就越高。

工具调用的作用就体现在这里:有些时候,大模型“掌握的信息不足”,比如需要实时数据(天气、股票行情)、用户资料,或者要协助用户执行操作(发送邮件、查询订单),这时就需要借助工具为它补充信息。但再次强调:大模型无需了解工具“如何工作”,只需知道“有这个工具、它能做什么、需要传递哪些参数”

这便是“上下文工程”与“工具设计”的结合点:你需要将“工具列表”设计成大模型能够理解的提示词部分。而MCP,就是帮助你简化这一过程的“工具”。

有无MCP,大模型接收的信息无差异

不使用MCP的情况使用MCP的情况
1. 你手动编写“get_weather (location)”的工具定义,并传递给大模型
2. 大模型生成“调用get_weather,参数为Seattle, WA”
3. 你手动编写代码调用查询天气的API
4. 将结果传递给大模型,由大模型生成回答
1. MCP服务器提供“MCP_get_weather (location)”的工具定义,并通过客户端传递给你
2. 你将工具定义传递给大模型(大模型看到的依旧是“get_weather (location)”)
3. 大模型生成“调用MCP_get_weather,参数为Seattle, WA”
4. MCP客户端协助你调用服务器上的工具,获取结果
5. 将结果传递给大模型,由大模型生成回答

自始至终,大模型都不会接触到“MCP服务器”“MCP客户端”这类概念,它只关心“工具列表是否正确”“参数是否完整”。MCP的价值,在于帮你省去“手动编写工具对接代码、维护工具格式”的繁琐工作,让你能够专注于“上下文工程”(例如:如何设计工具列表,才能让大模型更容易理解)。

五、总结:MCP是开发者的“便利工具”,而非大模型的“使用指南”

大模型从始至终都无需理解MCP,它唯一的职责就是依据你提供的“工具列表”撰写“调用指令”。MCP真正服务的对象是你(开发者):它帮助你简化“对接工具”的流程、规范操作标准,让你能够更快速地搭建出可靠且可复用的AI智能体,无需每次都从零开始“造轮子”。

所以,不必将其复杂化:使用MCP,并非为了让大模型“变得更聪明”,而是为了让你在搭建AI智能体系统时“更省心、更高效”。在实际开发中,你可以借助MCP快速整合各类工具资源,将更多精力投入到优化上下文设计、提升AI智能体交互体验等核心环节,从而更高效地打造出满足需求的AI应用。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值