规划模式是AI Agent在执行任务前先制定高级计划的工作方式,与ReAct模式不同。它能帮助Agent处理复杂任务,通过全局视角提高效率和准确性,避免遗漏重要步骤。规划模式包含三个阶段:规划阶段(分析目标生成子任务列表)、执行阶段(按顺序完成每个子任务)和聚合响应阶段(整合结果)。这种模式特别适用于问题可分解为子任务的情况,能提供更可解释和可验证的解决方案。当执行过程中遇到问题时,Agent还可重新调整计划,确保任务顺利完成。
- 什么是规划模式
规划模式让AI Agent在执行任何操作之前制定计划或解决方案。
Planning Agent不会像ReAct那样直接深入到逐步推理和工具使用中,而是会先为任务指定一个高级计划或路线图,之后Agent会去执行计划中的每一个步骤,最终给出答案。这种方式通过首先制定计划然后采取行动,增强了LLM代理处理复杂任务和决策的能力。
2. 为什么要规划
为什么我们需要为AI Agent设置明确的规划阶段?简而言之,有些问题过于复杂,如果没有全局战略,就无法一步一步解决。ReAct范式擅长被动决策。Agent会观察当前状态,决定一个动作并执行,然后观察结果并重复执行。
这对简单或高度不确定的任务非常有效,但对于受益于全局观的多步骤问题可能效果不好。Planning模式通过细分任务和概述目标,Agent可以获得对问题的整体看法,更具有战略性和更高的效率。
在这种情况下,ReAct Agent可能最终也能找到答案,但在过程中蜿蜒曲折或重复工作,因为每次它只能决定一个动作;而规划Agent会尝试提前确定所有必要的步骤,并且不太可能偏离目标。
规划是有效的,另一个原因是避免错过重要步骤,即使强制LLM逐步推理,也可能会跳过关键步骤或产生有缺陷的解决路径而出现幻觉。如果我们强调模型先制定计划再执行它,我们会迫使它思考整个解决方案路径,从而减少跳过步骤的机会。ReAct代理的设计使其每次只能规划一个动作,并且不一定会预见下一步之后的动作,可能导致复杂任务的执行轨迹不理想。
使用规划有效的情况:
- 问题自然地分解为子任务或阶段
- 不规划,Agent可能在许多步骤中忘记要求或背景。
- 贪婪的循序渐进的方法可能会陷入困境或偏离轨道。
- 希望Agent的解决方案路径是可解释和可验证的。
3.规划模式实际上如何运作
Agent会花一些时间提前思考,然后才逐一执行这些步骤。通过以这种方式构建Agent循环,可以获得更有条理、通常更高效的工作流程。
- 首先,LLM规划师分析用户请求并生成子任务列表。
- 单任务执行Agent按顺序处理每一个子任务,可能使用工具来完成。
- 单步任务执行后,Agent会根据结果更新其状态。如果新信息需要,Agent会在继续执行之前重新规划。
- 所有步骤完成后,Agent会像用户发出响应。这种关注点分离使得清晰的长期规划与迭代操作相结合成为可能。
3.1.规划阶段
Agent检查用户的查询或目标并制定高级计划,通常意味着将问题分解为子目标或子任务,可能会提示LLM输出解决问题所需的有序步骤列表。
此时,Agent正在创建路线图,尚未解决任何问题,它会在执行之前分析目标并决定策略,生成的计划可以是简单 的语言或结构化格式,只要后续步骤可以解释即可。
3.2. 执行阶段
一旦有了计划,Agent就会进入循环,迭代执行每个子任务。从计划中迈出第一步,执行并获取结果,然后进入下一步,以此类推。在执行过程中,Agent可能会根据每个子任务的需要调用外部工具或API,Agent始终将该计划作为下一步的行动指南,而不是从头开始构思新的行动,一直持续到所有计划的步骤都完成。
在次阶段,Agent会将结果或中间发现汇总到记忆或暂存器中,每次迭代都可以被认为Agent在计划的指导下专注于单个子问题。
3.3.聚合和响应
执行必要的步骤后,Agent会收集所有相关的输出并组成最终的答案或结果。由于Agent遵循了结构化计划,因此在此阶段可以直接汇总结果然后将最终响应呈现给用户。
规划模式的一个可选但重要的方面是反馈和迭代。与传统程序不同,AI Agent可以检测到某些事情没有按预期进行时进行调整。在执行过程中,如果子任务失败或产生意外结果,代理可以决定重新审视计划。
理想情况下,代理将按照修改后的计划继续执行。实际上,可以通过再次调用LLM规划师来实现,向其提供部分进度并请求更新后的计划。这确保了当情况发生变化时,Agent不会陷入糟糕的初始计划。
通过将Agent的工作流程构建为计划阶段和执行阶段,可以获得更好的组织性、清晰度,并且通常可以为复杂任务获得更好的结果。
读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**
如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会!
👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。
你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
为什么要学习大模型?
数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
大模型学习路线汇总
整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
大模型实战项目&配套源码
光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
大模型学习必看书籍PDF
我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
大模型超全面试题汇总
在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
这些资料真的有用吗?
这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
👉获取方式:
😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!