Ubuntu20.04 LTS CUDA安装、TF-GPU、Torch-GPU

本文详细介绍了如何在Ubuntu20.04 LTS上卸载及安装NVIDIA驱动、CUDA和cuDNN,以及如何配置和测试TensorFlow-GPU和PyTorch-GPU环境。步骤包括:安全卸载NVIDIA驱动,查找并安装合适驱动,安装CUDA和cuDNN,以及通过conda和pip安装TF2-GPU和pytorch-gpu。最后,提供了测试GPU是否正常工作的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CUDA 卸载没有 uninstall

卸载办法

# 用 runfile 方式安装的删除方法:
sudo /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl
# 用 package manager 方式安装的删除方法:
sudo apt-get --purge remove cuda-8.0
sudo apt autoremove
sudo apt-get autoclean
# cudnn文件和samples残留在 /usr/local/cuda-8.0/,删除
sudo rm -rf /usr/local/cuda-8.0/
卸载驱动

sudo apt-get remove --purge nvidia*

查找可安装的驱动

ubuntu-drivers devices

安装推荐驱动

sudo apt install nvidia-driver-460

查看NVIDIA驱动版本

cat /proc/driver/nvidia/version
驱动和cudaToolkit版本对应
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
![image.png](https://img-blog.csdnimg.cn/img_convert/c640932a8915f10b1b4aef12fd7667d0.png#align=left&display=inline&a

Ubuntu 20.04上配置深度学习环境通常涉及安装必要的软件包、设置GPU支持以及选择一个深度学习框架。以下是基本步骤: 1. **更新系统**: ``` sudo apt update && sudo apt upgrade ``` 2. **安装依赖库**: - 使用`sudo apt install` 安装基本库,如Python、Git、CUDA、cuDNN等: ```bash sudo apt install python3 python3-pip software-properties-common git nvidia-cuda-toolkit libnvidia-dev cmake ``` 3. **添加额外的PPA(Personal Package Archive)**: - 对于CUDA和TensorFlow等特定版本,可能需要添加官方PPA,例如: ``` sudo add-apt-repository ppa:ubuntu-comput视觉-team/ppa sudo add-apt-repository ppa:tensorflow-infra/p因果图-tensorflow-lts ``` 4. **安装GPU驱动**: - 如果你是NVIDIA用户,运行: ``` sudo apt-get install nvidia-driver-<version> ``` 替换 `<version>` 为你的显卡对应的实际驱动版本。 5. **安装深度学习框架**: - TensorFlow: ```bash pip3 install tensorflow==<version> # 更改成适合的TensorFlow版本 ``` - PyTorch: ```bash pip3 install torch torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html ``` 或者对于最新的PyTorch Nightly版: ```bash pip3 install torch-nightly -f https://download.pytorch.org/whl/nightly/cu11X/torch_nightly.html ``` 6. **验证安装**: 运行示例代码测试是否成功,比如 `python3 -c "import tensorflow as tf; print(tf.reduce_sum([1, 2, 3]))"` 或 `python3 -m torch.cuda.synchronize()`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值