Focal Loss介绍

从交叉熵讲,

Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^) Loss = L(y, \hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p}) Loss=L(y,p^)=ylog(p^)(1y)log(1p^)

以二分类问题为例,

L=1N(∑yi=1m−log(p^)+∑yi=0n−log(1−p^))L=\frac{1}{N}(\sum_{y_i =1}^m -log(\hat{p})+\sum_{y_i=0}^{n}-log(1-\hat{p}))L=N1(yi=1m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值