最简单的函数逼近法~~ 题目意思很简单,这个题我们要说的是一种新的解题方法(当然,对我来说是新的,老鸟就不用说了三.)
题目大意是:如图,有一个街道,街道两边平行的有两排房子,一个长为X的梯子和一个长为Y的梯子如图那样放置在街道上.现在已知X,Y的长度和两个梯子的交点离地的高度C,求街道的宽度.
简单的几何分析后,设宽度为W,很快可以得到一个宽度和Y,X,C之间的关系(想直接解出W好像很有困难)
c/sqrt((x*x-w*w))+c/sqrt((y*y-w*w))-1=0-----------F(w);
显然满足这个方程的W即为本题的解;现在我们无法直接解出这个方程,那我们就开始二分查找;
0<W<Z=X>Y?Y:X (Z为X,Y中较小的那一个);我们就从这个范围里面查找答案(答案满足题目要求的精确度即可;
Start=0;end=z;(查找范围)mid=(start+end)/2;(二分的中间值)
如果F(mid)>0; end=mid; mid=(start+end)/2;
否则:start=mid; mid=(start+end)/2;
这样一直查找下去,直到找到满足题目要求精度的mid即为W;
我的程序如下: 多多指教:-)
#include <iostream>
#include <math.h>
using namespace std;
double x,y,c;
double Cal_f(double x,double y,double c,double w)//F(W)的值;
{
double ans;
ans=c/(sqrt(x*x-w*w))+c/(sqrt(y*y-w*w))-1;
return ans;
}
void Cal_w(double x,double y,double c)//二分查找W;
{
double start=0,end=x>y?y:x;
double mid=(start+end)/2;
while(fabs(Cal_f(x,y,c,mid)-0)>0.0000001)//精度越高越好,当然满足题目要求就行;
{
if(Cal_f(x,y,c,mid)<0)//二分查找;
start=mid;
else
end=mid;
mid=(start+end)/2;
}
printf("%.3lf/n",mid);
}
int main(void)
{
while(scanf("%lf%lf%lf",&x,&y,&c)==3)
Cal_w(x,y,c);
return 0;
}
题目大意是:如图,有一个街道,街道两边平行的有两排房子,一个长为X的梯子和一个长为Y的梯子如图那样放置在街道上.现在已知X,Y的长度和两个梯子的交点离地的高度C,求街道的宽度.
简单的几何分析后,设宽度为W,很快可以得到一个宽度和Y,X,C之间的关系(想直接解出W好像很有困难)
c/sqrt((x*x-w*w))+c/sqrt((y*y-w*w))-1=0-----------F(w);
显然满足这个方程的W即为本题的解;现在我们无法直接解出这个方程,那我们就开始二分查找;
0<W<Z=X>Y?Y:X (Z为X,Y中较小的那一个);我们就从这个范围里面查找答案(答案满足题目要求的精确度即可;
Start=0;end=z;(查找范围)mid=(start+end)/2;(二分的中间值)
如果F(mid)>0; end=mid; mid=(start+end)/2;
否则:start=mid; mid=(start+end)/2;
这样一直查找下去,直到找到满足题目要求精度的mid即为W;
我的程序如下: 多多指教:-)
#include <iostream>
#include <math.h>
using namespace std;
double x,y,c;
double Cal_f(double x,double y,double c,double w)//F(W)的值;
{
double ans;
ans=c/(sqrt(x*x-w*w))+c/(sqrt(y*y-w*w))-1;
return ans;
}
void Cal_w(double x,double y,double c)//二分查找W;
{
double start=0,end=x>y?y:x;
double mid=(start+end)/2;
while(fabs(Cal_f(x,y,c,mid)-0)>0.0000001)//精度越高越好,当然满足题目要求就行;
{
if(Cal_f(x,y,c,mid)<0)//二分查找;
start=mid;
else
end=mid;
mid=(start+end)/2;
}
printf("%.3lf/n",mid);
}
int main(void)
{
while(scanf("%lf%lf%lf",&x,&y,&c)==3)
Cal_w(x,y,c);
return 0;
}