二分函数逼近法

本文探讨了如何使用二分查找算法进行函数逼近,通过实例解析了该方法在解决数学问题中的有效性。通过对目标函数的不断分割和评估,二分查找能够精确找到函数的特定值或近似解,其高效性和准确性在实际编程中得到了广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
最简单的函数逼近法~~ 题目意思很简单,这个题我们要说的是一种新的解题方法(当然,对我来说是新的,老鸟就不用说了三.)
题目大意是:如图,有一个街道,街道两边平行的有两排房子,一个长为X的梯子和一个长为Y的梯子如图那样放置在街道上.现在已知X,Y的长度和两个梯子的交点离地的高度C,求街道的宽度.
简单的几何分析后,设宽度为W,很快可以得到一个宽度和Y,X,C之间的关系(想直接解出W好像很有困难)
c/sqrt((x*x-w*w))+c/sqrt((y*y-w*w))-1=0-----------F(w);
显然满足这个方程的W即为本题的解;现在我们无法直接解出这个方程,那我们就开始二分查找;
0<W<Z=X>Y?Y:X (Z为X,Y中较小的那一个);我们就从这个范围里面查找答案(答案满足题目要求的精确度即可;
         Start=0;end=z;(查找范围)mid=(start+end)/2;(二分的中间值)
如果F(mid>0; end=mid; mid=(start+end)/2;
否则:start=mid; mid=(start+end)/2;
这样一直查找下去,直到找到满足题目要求精度的mid即为W;
我的程序如下:   多多指教:-)
#include <iostream>
#include <math.h>
using namespace std;
double x,y,c;
double Cal_f(double x,double y,double c,double w)//
F(W)的值;

{
    double ans;
    ans=c/(sqrt(x*x-w*w))+c/(sqrt(y*y-w*w))-1;
    return ans;
}
void Cal_w(double x,double y,double c)//
二分查找W;
{
    double start=0,end=x>y?y:x;
    double mid=(start+end)/2;
    while(fabs(Cal_f(x,y,c,mid)-0)>0.0000001)//
精度越高越好,当然满足题目要求就行;
    {
        if(Cal_f(x,y,c,mid)<0)//
二分查找;
            start=mid;
        else
            end=mid;
        mid=(start+end)/2;
    }
    printf("%.3lf/n",mid);
}
    

int main(void)
{
    while(scanf("%lf%lf%lf",&x,&y,&c)==3)
        Cal_w(x,y,c);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值