目录
1. Introduction
In recommendation systems, two types of users’ private information are leaked in traditional MF(Matrix Factorization) :
(i) users’ raw preference data
(ii)users’ learned latent feature vectors
Prior studies have studied privacy-preserving MF in two main types:
(1) Obfuscation-based methods:obfuscate users’ preference raw data before releasing it to the central server so as to ensure certain level of privacy protection (e.g., differential privacy)
(2) Encryption-based methods:use advanced encryption schemes such as homomorphic encryption for implementing privacy-preserving MF
2.Preliminaries
Horizontal Federated Learning
- Horizontal federated learning is introduced in the scenarios when the data from different contributors share the same feature space but vary in samples.
Additively Homomorphic Encryption
3.User-level Distributed Matrix Factorization
M ∈ [n] × [m] as user-item rating pairs which a rating has been generated, M = |M| as the total number of ratings and ri,j represents the rating generated by user i for item j
Matrix factorization formulates this problem as fitting a bi-linear model on the existing ratings. The computing process of U and V can be done by sol