【CS.AL】算法核心之贪心算法 —— 力扣(LeetCode)743. 网络延迟时间 - Dijkstra算法题解

文章目录

    • 题目描述
    • References

题目描述

743. 网络延迟时间 - 力扣(LeetCode)

N 个网络节点,标记为 1N

给定一个列表 times,其中 times[i] = (u, v, w) 表示有一条从节点 u 到节点 v 的时延为 w 的有向边。

现在,我们从某个节点 K 发送一个信号。需要多少时间才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1

示例:

输入: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2
输出: 2

可以使用 Dijkstra 算法来解决这个问题。算法的步骤如下:

  1. 构建邻接表:将输入的 times 转换成图的邻接表表示。 Ref. 【CS.DS】数据结构 —— 图:深入了解三种表示方法之邻接表(Adjacency List)
  2. 初始化数据结构:距离数组 dist[],所有节点的距离初始化为无穷大,起点的距离设为 0;优先级队列 pq 存储每个节点及其当前已知的最短距离。
  3. 执行 Dijkstra 算法:使用优先级队列选择当前距离起点最近的节点,更新其邻接节点的距离,并将更新后的节点加入队列。
  4. 计算结果:在所有节点都收到信号时,返回最大的距离;如果有节点未收到信号,返回 -1
#include <vector>
#include <unordered_map>
#include <queue>
#include <climits>

using namespace std;

int networkDelayTime(vector<vector<int>>& times, int N, int
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值