基于Docker安装Logstash
docker pull logstash:7.16.3
-
启动容器
docker run -d --name=logstash logstash:7.16.3 查看日志 docker logs -f logstash 如果出现:Starting server on port:5044 Successfully started Logstash API endpoint {:port=>9600} 启动成功。
-
拷贝数据赋予权限
docker cp logstash:/usr/share/logstash /home/data mkdir /home/data/logstash/config/conf.d chmod 777 -R /home/data/logstash
-
修改配置文件
vi logstash/config/logstash.yml
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://elasticsearch:9200" ]
# path.config: /usr/share/logstash/config/conf.d/*.conf
path.logs: /user/share/logstash/logs
5.删除之前的容器,重新创建新的容器
#删除
docker rm -f logstash
#提前部署MySQL
#重新创建 (使用了 --link 参数连接 elasticsearch 和 mysql8[这是旧方式]建议使用自定义网络)
docker run -d --link elasticsearch --link mysql8 -e ES_JAVA_OPTS="-Duser.timezone=Asia/Shanghai" -v /home/data/logstash/config:/usr/share/logstash/config -v /home/data/logstash/data:/usr/share/logstash/data -v /home/data/logstash/pipeline:/usr/share/logstash/pipeline --name logstash logstash:7.16.3
6.向宿主机中传入连接数据库的驱动包和创建查询SQL文件
#创建文件夹用于存放驱动包和SQL文件(根据自己情况)
#先创建一个jdbc文件夹在jdbc中创建jars文件夹(存放驱动板)和SQL文件夹(存放SQL文件)
mkdir /home/data/logstash/config/jdbc
mkdir /home/data/logstash/config/jdbc/jars
mkdir /home/data/logstash/config/jdbc/sql
7.在文件目录/home/zx/logstash/config/conf.d下创建logstash-jdbc.conf文件
input {
jdbc {
type => "_doc"
# 数据库连接地址
jdbc_connection_string => "jdbc:mysql://mysql8:3306/dm_item?characterEncoding=UTF-8&autoReconnect=true"
# 数据库连接账号密码;
jdbc_user => "root"
jdbc_password => "123456"
# MySQL依赖包路径;
jdbc_driver_library => "/usr/share/logstash/config/jdbc/jars/mysql-connector-java-8.0.27.jar"
# the name of the driver class for mysql 低版本mysql 使用 com.mysql.jdbc.Driver
jdbc_driver_class => "com.mysql.cj.jdbc.Driver"
# 数据库重连尝试次数
connection_retry_attempts => "3"
# 判断数据库连接是否可用,默认false不开启
jdbc_validate_connection => "true"
# 数据库连接可用校验超时时间,默认3600S
jdbc_validation_timeout => "3600"
# 开启分页查询(默认false不开启);
jdbc_paging_enabled => "true"
# 单次分页查询条数(默认100000,若字段较多且更新频率较高,建议调低此值);
jdbc_page_size => "100000"
# statement为查询数据sql,如果sql较复杂,建议配通过statement_filepath配置sql文件的存放路径;
# sql_last_value为内置的变量,存放上次查询结果中最后一条数据tracking_column的值,此处即为ModifyTime;
# statement_filepath => "mysql/jdbc.sql"
statement_filepath => "/usr/share/logstash/config/jdbc/sql/dm_item.sql"
# 是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false);
lowercase_column_names => false
# Value can be any of: fatal,error,warn,info,debug,默认info;
sql_log_level => warn
#
# 是否记录上次执行结果,true表示会将上次执行结果的tracking_column字段的值保存到last_run_metadata_path指定的文件中;
record_last_run => true
# 需要记录查询结果某字段的值时,此字段为true,否则默认tracking_column为timestamp的值;
use_column_value => true
# 需要记录的字段,用于增量同步,需是数据库字段
tracking_column => "id"
# Value can be any of: numeric,timestamp,Default value is "numeric"
tracking_column_type => "numeric"
# record_last_run上次数据存放位置;
last_run_metadata_path => "/usr/share/logstash/config/jdbc/sql/.dm_item_last_run"
# 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;
clean_run => false
#
# 同步频率(分 时 天 月 年),默认每分钟同步一次; #
schedule => "* * * * *"
}
}
output {
elasticsearch {
# host => "localhost"
# port => "9200"
# 配置ES地址,集群配置方式 ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
hosts => ["elasticsearch:9200"]
# 索引名字,必须小写,一般以同步的表名为索引名称
index => "dm_item"
# 数据唯一索引(建议使用数据库KeyID)
document_id => "%{id}"
}
stdout {
codec => json_lines
}
}
8.关闭logstash.yml 中path.config: /usr/share/logstash/config/conf.d/*.conf的注释
重启容器
vi logstash/config/logstash.yml
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://elasticsearch:9200" ]
path.config: /usr/share/logstash/config/conf.d/*.conf
path.logs: /user/share/logstash/logs