cat本地部署

安装环境

jdk1.8 tomcat mysql环境

准备cat包文件

有两种方式:

1、git获取cat包文件的源码

git clone https://github.com/dianping/cat.git mvn install -Dmaven.test.skip

2、直接下载官网war包

http://unidal.org/nexus/service/local/repositories/releases/content/com/dianping/cat/cat-home/3.0.0/

正式部署

1、创建配置文件目录

cat环境的默认地址在/data下,所以需要先创建目录

mkdir -p /data/appdatas/cat/ #创建数据目录

mkdir -p /data/applogs/ #创建日志目录

chmod 777 /data/* #赋予权限

2、创建配置文件

vim /data/appdatas/cat/client.xml

<?xml version="1.0" encoding="utf-8"?>
    <config mode="client">
        <servers>
            <server ip="192.168.247.145" port="2280" http-port="8080"/>
        </servers>
    </config>
    
vim /data/appdatas/cat/datasources.xml

<data-sources>
    <data-source id="cat">
        <maximum-pool-size>3</maximum-pool-size>
        <connection-timeout>1s</connection-timeout>
        <idle-timeout>10m</idle-timeout>
        <statement-cache-size>1000</statement-cache-size>
        <properties>
            <driver>com.mysql.jdbc.Driver</driver>
            <url><![CDATA[jdbc:mysql://127.0.0.1:3306/cat]]></url>                          
            <user>root</user>                                                                               
            <password>Temp@123</password>                                                                     
            <connectionProperties><![CDATA[useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&socketTimeout=120000]]></connectionProperties>
        </properties>
    </data-source>
</data-sources>

vim /data/appdatas/cat/server.xml
 
<?xml version="1.0" encoding="utf-8"?>
<config local-mode="false" hdfs-machine="false" job-machine="true" alert-machine="false">
        <storage  local-base-dir="/data/appdatas/cat/bucket/" max-hdfs-storage-time="15" local-report-storage-time="7" local-logivew-storage-time="7">
                <hdfs id="logview" max-size="128M" server-uri="hdfs://127.0.0.1/user/cat" base-dir="logview"/>
                <hdfs id="dump" max-size="128M" server-uri="hdfs://127.0.0.1/user/cat" base-dir="dump"/>
                <hdfs id="remote" max-size="128M" server-uri="hdfs://127.0.0.1/user/cat" base-dir="remote"/>
        </storage>
        <console default-domain="Cat" show-cat-domain="true">
                <remote-servers>127.0.0.1:8080</remote-servers>
        </console>
</config>

client.xml

datasources.xml

server.xml

3、创建cat库

cat的数据库结构在git中有涉及,可以根据提供的sql文件,创建表结构

git地址:https://github.com/dianping/cat

新建数据库

添加图片注释,不超过 140 字(可选)

添加图片注释,不超过 140 字(可选)

部署tomcat

[root@docker ~]# tar -xzvf apache-tomcat-9.0.36.tar.gz -C /usr/local/ 
[root@docker ~]# cd /usr/local/apache-tomcat-9.0.36/webapps/ 
[root@docker webapps]# ll 
total 4 
drwxr-x--- 16 root root 4096 Aug 12 00:11 docs 
drwxr-x--- 6 root root 83 Aug 12 00:11 examples 
drwxr-x--- 5 root root 87 Aug 12 00:11 host-manager 
drwxr-x--- 5 root root 103 Aug 12 00:11 manager 
drwxr-x--- 3 root root 283 Aug 12 00:11 ROOT 
[root@docker webapps]# rz -E rz waiting to receive. 
[root@docker webapps]# ll 
total 60496 
-rw-r--r-- 1 root root 61942691 Aug 11 00:32 cat.war 
drwxr-x--- 16 root root 4096 Aug 12 00:11 docs 
drwxr-x--- 6 root root 83 Aug 12 00:11 examples 
drwxr-x--- 5 root root 87 Aug 12 00:11 host-manager 
drwxr-x--- 5 root root 103 Aug 12 00:11 manager 
drwxr-x--- 3 root root 283 Aug 12 00:11 ROOT

解压包 并将cat.war,并移动到tomcat的webapps下

启动tomcat服务

浏览器打开http://192.168.247.145:8080/cat/r

配置cat

将127.0.0.1全部改为实际ip地址

### 如何部署CatBoost模型 #### 准备工作 为了成功部署CatBoost模型,需先安装必要的软件包。这可以通过Python的pip工具完成[^2]。 ```bash pip install catboost flask gunicorn ``` #### 训练并保存模型 在准备阶段之后,下一步是训练模型并将之保存以便后续加载和使用。此过程涉及定义参数、拟合数据以及最终存储训练好的模型对象到磁盘上[^3]。 ```python from catboost import CatBoostClassifier # 假设X_train, y_train已经准备好 model = CatBoostClassifier(iterations=100, depth=6, learning_rate=0.1) model.fit(X_train, y_train) # 保存模型至文件 model.save_model('catboost.model') ``` #### 创建Flask Web服务 为了让其他应用程序能够调用这个机器学习模型,通常会构建一个RESTful API接口。这里采用Flask框架作为HTTP服务器的基础结构来实现这一目标。 ```python from flask import Flask, request, jsonify import json from catboost import CatBoostClassifier app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): data = request.get_json(force=True) model = CatBoostClassifier() model.load_model('catboost.model') prediction = model.predict(data['features']).tolist() return app.response_class( response=json.dumps({'prediction': prediction}), status=200, mimetype='application/json' ) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ``` #### 部署与运行 最后一步是在生产环境中启动上述编写的API服务程序。对于小型项目可以直接利用`gunicorn`这样的WSGI HTTP服务器来托管Flask应用;而对于更复杂的情况,则可能涉及到容器化技术(Docker)、云平台上的弹性伸缩等功能。 ```bash gunicorn -w 4 -b :8080 app:app ``` 这样就完成了从本地开发环境下的单机测试版本向线上可用的服务转变的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无敌暴龙兽z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值