布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。
输入格式:
输入第一行给出3个正整数:N(<= 100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:“宾客1 宾客2 关系”,其中“关系”为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。
这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。
输出格式:
对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出“No problem”;如果他们之间并不是朋友,但也不敌对,则输出“OK”;如果他们之间有敌对,然而也有共同的朋友,则输出“OK but...”;如果他们之间只有敌对关系,则输出“No way”。
输入样例:7 8 4 5 6 1 2 7 -1 1 3 1 3 4 1 6 7 -1 1 2 1 1 4 1 2 3 -1 3 4 5 7 2 3 7 2输出样例:
No problem OK OK but... No way
题意:判断两个人的关系,有四种,1.是朋友,无敌对 2.不是朋友,有敌对 3.不是朋友,无敌对 4.有共同朋友,有敌对
思路:使用并查集来判断两个人之间是否为朋友或有共同朋友,再用二维数组来判断两个人是否为敌对关系。
并查集路径未压缩:
评测结果
时间 | 结果 | 得分 | 题目 | 语言 | 用时(ms) | 内存(kB) | 用户 |
---|---|---|---|---|---|---|---|
3月27日 12:02 | 答案正确 | 25 | L2-010 | C++ (g++ 4.7.2) | 6 | 484 | ccccczd |
测试点
测试点 | 结果 | 用时(ms) | 内存(kB) | 得分/满分 |
---|---|---|---|---|
0 | 答案正确 | 3 | 360 | 18/18 |
1 | 答案正确 | 6 | 364 | 3/3 |
2 | 答案正确 | 3 | 264 | 3/3 |
3 | 答案正确 | 3 | 484 | 1/1 |
并查集路径压缩后:
评测结果
时间 | 结果 | 得分 | 题目 | 语言 | 用时(ms) | 内存(kB) | 用户 |
---|---|---|---|---|---|---|---|
3月27日 11:56 | 答案正确 | 25 | L2-010 | C++ (g++ 4.7.2) | 5 | 480 | ccccczd |
测试点
测试点 | 结果 | 用时(ms) | 内存(kB) | 得分/满分 |
---|---|---|---|---|
0 | 答案正确 | 2 | 476 | 18/18 |
1 | 答案正确 | 5 | 480 | 3/3 |
2 | 答案正确 | 3 | 264 | 3/3 |
3 | 答案正确 | 2 | 360 | 1/1 |
可见,路径压缩是用空间换时间的做法。之后使用视情况而定。
在做题过程中,对是共同好友卡了一下,忽略了,只要是一个集合里的,就有共同好友。参考了别的博主的想法。还是需要多加努力!
代码如下:
#include<cstdio>
int pre[105],map[105][105]={0};
int find(int x){
int r=x;
while(pre[r]!=r)
r=pre[r];
int t=x,temp;
while(t!=r){
temp=pre[t];
pre[t]=r;
t=temp;
}
return r;
}
void join(int x,int y){
int xx=find(x);
int yy=find(y);
if(xx!=yy)
pre[xx]=yy;
}
int main(){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
int i;
for(i=1;i<=n;i++)
pre[i]=i;
for(i=0;i<m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(z==1)
join(x,y);
else
map[x][y]=map[y][x]=z;
}
for(i=0;i<k;i++){
int x,y;
scanf("%d%d",&x,&y);
if(find(x)==find(y)&&map[x][y]!=-1)
printf("No problem\n");
else if(find(x)!=find(y)&&map[x][y]==0)
printf("OK\n");
else if(find(x)==find(y)&&map[x][y]==-1)
printf("OK but...\n");
else if(find(x)!=find(y)&&map[x][y]==-1)
printf("No way\n");
}
return 0;
}