CUDA代码的高效策略

1.高效公式
最大化计算强度:
Math/Memory: 数学计算量/每个线程的内存,最大化的就是要么使他的计算量变大,要么使每个线程用的内存变少。要使每个线程使用的内存变少还有两种方法:第一是尽可能的把数据存放在本地内存,或共享内存,不仅仅是全局内存。第二呢,是通过一些技巧,把全局内存做一个合并,这样会加快读取线程的速度。要么增大计算量,要么减少每个线程的内存。要么每个线程读取的数据量变少,要么每个线程读取的速度变快,而又有两种方法,第一是转变内存位置,第二是对读取慢的位置做优化。

在这里插入图片描述
1.2 合并全局内存

在这里插入图片描述
之所以叫合并全局内存,是因为我们赞成的方式是第一种。

好的代码:


```cpp
__global__ void kernel(float *g){
	float a = 0.00;
	int i = threadIdx.x;
	g[i] = a; //write data
	a = g[i]; // read data
}


一般的

```cpp
__global__ void kernel(float *g){
	float a = 0.00;
	int i = threadIdx.x;
	g[2*i] = a; //write data
	a = g[2*i]; // read data
}

避免线程发散
线程发散:同一个线程块中的线程执行不同内容的代码,如图

在这里插入图片描述
导致发散的例子:kernel中做条件判断

__global__ void kernel(){
	if(/* condition */){
	  // some code
	}else{
	   // some other code
	}
}
  1. 循环长度不一

在这里插入图片描述
代码

__global__ void kernel(){
// pre loop code
for(int i=0;i<threadIdx.x;++i){
	// loop code
}
	// post loop code
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值