集群和分布式的区别和联系

在IDF05(Intel Developer Forum 2005)上,会议指出单纯依靠垂直提升硬件性能来提高系统性能的时代已结束,分布式开发的时代实际上早已悄悄地成为了时代的主流,吵得很热的云计算实际上只是包装在分布式之外的商业概念,很多开发者都想加入研究云计算这个潮流,在google上通过“云计算”这个关键词来查询资料,查到的都是些概念性或商业性的宣传资料,其实真正需要深入的还是那个早以被人熟知的概念------分布式。

分布式可繁也可以简,最简单的分布式就是大家最常用的,在负载均衡服务器后加一堆web服务器,然后在上面搞一个缓存服务器来保存临时状态,后面共享一个数据库,其实很多号称分布式专家的人也就停留于此,大致结构如下图所示:

这种环境下真正进行分布式的只是web server而已,并且web server之间没有任何联系,所以结构和实现都非常简单。

有些情况下,对分布式的需求就没这么简单,在每个环节上都有分布式的需求,比如Load Balance、DB、Cache和文件等等,并且当分布式节点之间有关联时,还得考虑之间的通讯,另外,节点非常多的时候,得有监控和管理来支撑。这样看起来,分布式是一个非常庞大的体系,只不过你可以根据具体需求进行适当地裁剪。按照最完备的分布式体系来看,可以由以下模块组成:

分布式任务处理服务:负责具体的业务逻辑处理

分布式节点注册和查询:负责管理所有分布式节点的命名和物理信息的注册与查询,是节点之间联系的桥梁

分布式DB:分布式结构化数据存取

分布式Cache:分布式缓存数据(非持久化)存取

分布式文件:分布式文件存取

网络通信:节点之间的网络数据通信

监控管理:搜集、监控和诊断所有节点运行状态

分布式编程语言:用于分布式环境下的专有编程语言,比如Elang、Scala

分布式算法:为解决分布式环境下一些特有问题的算法,比如解决一致性问题的Paxos算法

因此,若要深入研究云计算和分布式,就得深入研究以上领域,而这些领域每一块的水都很深,都需要很底层的知识和技术来支撑,所以说,对于想提升技术的开发者来说,以分布式来作为切入点是非常好的,可以以此为线索,探索计算机世界的各个角落。

 

集群是个物理形态,分布式是个工作方式。

只要是一堆机器,就可以叫集群,他们是不是一起协作着干活,这个谁也不知道;一个程序或系统,只要运行在不同的机器上,就可以叫分布式,嗯,C/S架构也可以叫分布式。

集群一般是物理集中、统一管理的,而分布式系统则不强调这一点。


所以,集群可能运行着一个或多个分布式系统,也可能根本没有运行分布式系统;分布式系统可能运行在一个集群上,也可能运行在不属于一个集群的多台(2台也算多台)机器上。

 

 

布式是相对中心化而来,强调的是任务在多个物理隔离的节点上进行。中心化带来的主要问题是可靠性,若中心节点宕机则整个系统不可用,分布式除了解决部分中心化问题,也倾向于分散负载,但分布式会带来很多的其他问题,最主要的就是一致性。
集群就是逻辑上处理同一任务的机器集合,可以属于同一机房,也可分属不同的机房。分布式这个概念可以运行在某个集群里面,某个集群也可作为分布式概念的一个节点。
一句话,就是:“分头做事”与“一堆人”的区别

 

分布式是指将不同的业务分布在不同的地方。 而集群指的是将几台服务器集中在一起,实现同一业务。

分布式中的每一个节点,都可以做集群。 而集群并不一定就是分布式的。

举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。

而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。

分布式的每一个节点,都完成不同的业务,一个节点垮了,哪这个业务就不可访问了。

2:简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。

例如:

如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行该任务需10小时。

采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Reduce分布式计算模型)

而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,1小时后,10个任务同时完成,这样,整身来看,还是1小时内完成一个任务!


集群一般被分为三种类型,高可用集群如RHCS、LifeKeeper等,负载均衡集群如LVS等、高性能运算集群;分布式应该是高性能运算集群范畴内。

 

 

分布式:不同的业务模块部署在不同的服务器上或者同一个业务模块分拆多个子业务,部署在不同的服务器上,解决高并发的问题
集群:同一个业务部署在多台机器上,提高系统可用性

 

 

小饭店原来只有一个厨师,切菜洗菜备料炒菜全干。后来客人多了,厨房一个厨师忙不过来,又请了个厨师,两个厨师都能炒一样的菜,这两个厨师的关系是集群。为了让厨师专心炒菜,把菜做到极致,又请了个配菜师负责切菜,备菜,备料,厨师和配菜师的关系是分布式,一个配菜师也忙不过来了,又请了个配菜师,两个配菜师关系是集群

<think>嗯,用户想理解集群分布式系统的区别。这个问题其实在系统架构设计中很基础但也很重要,从引用内容看用户应该已经接触过一些资料,但可能还缺乏系统性的对比。 用户提供的引用材料挺全面,特别是引用2引用4把集群描述为"相同功能的多副本",分布式则是"拆分业务"。不过引用3提到mysql的例子时,把分布式存储分布式文件系统混在一起讨论了,这里可能需要帮用户厘清。 我注意到用户可能存在的几个认知盲点:一是容易把技术实现设计目的混淆,比如引用4提到负载均衡就只想到集群;二是对"单点故障"的理解可能停留在表面,没意识到分布式系统里某个业务节点故障集群中某个副本故障的恢复机制完全不同。 准备用表格形式对比核心差异,这样最直观。要特别强调设计目标的不同:集群是为了扛高并发,分布式是为了解耦复杂业务。用户可能没意识到这会导致运维复杂度差异——分布式系统调试就像在迷宫找路,而集群扩容就像复印文件。 用户应该会对CAP理论感兴趣,虽然引用里没提,但这是分布式系统的精髓。不过第一次解释时用"一致性优先还是可用性优先"这种白话更友好,避免直接抛术语。 最后那个动物园管理员的类比可能有点幼稚,但能帮助非技术背景用户建立画面感。技术用户可以直接看架构图,不过当前对话没有附图条件。</think>好的,我们来清晰、系统地梳理一下集群(Cluster)分布式系统(Distributed System)之间的核心区别。 **核心区别总结:** * **集群的核心是“复制”与“冗余”:** 将**相同的业务/服务**部署在**多台服务器**上,像一个团队的多名成员做**完全相同**的工作,目的是**提高处理能力、可用性容错性**。 * **分布式系统的核心是“拆分”与“协作”:** 将一个**大型、复杂的业务/系统**拆分成**多个不同的子业务/模块**,这些子业务/模块部署在**多台服务器**上,彼此**协同工作**,像一个团队的不同成员负责**不同的专业任务**,共同完成一个**大项目**,目的是**解决单机无法处理的性能、存储或复杂度问题**。 **详细对比:** | 特征 | 集群 (Cluster) | 分布式系统 (Distributed System) | | :----------- | :------------------------------------------------ | :------------------------------------------------------- | | **设计目标** | **提高性能(吞吐量)、可用性、容错性。** | **解决单机性能/存储瓶颈、处理复杂业务、提高可扩展性。** | | **业务/服务** | **所有节点运行完全相同的业务逻辑应用代码。** | **不同节点运行不同的业务逻辑或应用模块(子服务)。** | | **数据** | **通常所有节点访问共享的同一份数据源(如共享存储),或维护完全相同的数据副本(需要同步)。** | **数据通常根据业务拆分存储在不同节点上(分片),节点可能只持有部分数据。** | | **节点关系** | **节点是“平等”的副本,功能无差别。** | **节点是“专业分工”的,功能有差异,相互依赖。** | | **扩展方式** | **水平扩展:增加更多相同功能的节点(复制)。** | **水平扩展:可以按需增加特定功能的节点(分治)。** | | **主要优势** | **高可用(一个节点宕机,其他顶上)、负载均衡(分摊请求)、易于横向扩展同质服务。** | **高性能(并行处理)、大容量存储(分片)、可扩展复杂系统、资源灵活利用。** | | **主要挑战** | **数据一致性(副本同步)、脑裂问题(网络分区时协调)、共享资源瓶颈。** | **系统复杂性(设计、开发、调试)、网络通信开销与可靠性、分布式事务、数据一致性(跨节点)、容错(部分节点故障影响整体业务流)。** | | **故障影响** | **单节点故障通常不影响服务(其他副本接管),服务整体可用。** | **单节点故障可能导致其负责的**特定功能**不可用,可能影响整体业务流程(除非有冗余设计)。** | | **对外表现** | **用户感知为一个更强大、更可靠的单体服务。** | **用户感知为一个单一的逻辑系统,但内部由多台协作的计算机组成。** | | **典型场景** | **Web服务器集群、数据库读写分离从库集群、Redis Sentinel/Sentinel集群。** | **大型网站后端微服务架构(用户服务、订单服务、支付服务等)、分布式数据库(如HBase, Cassandra)、分布式文件系统(如HDFS)、大数据处理框架(如Hadoop, Spark)。** | | **类比** | **多个收银员在多个收银台处理相同的结账业务。** | **一个工厂的生产线:采购、加工、组装、质检、包装由不同车间(节点)协作完成。** | **关键概念图解:** 1. **集群:** * 用户请求 -> 负载均衡器 -> [节点A: 完整服务] 或 [节点B: 完整服务] 或 [节点C: 完整服务] * **所有节点 (A, B, C) 都能独立处理完整的用户请求。** 负载均衡器只是决定把请求发给谁。数据通常存储在共享数据库或需要同步。 2. **分布式系统:** * 用户请求 -> 网关/协调器 -> (可能需要调用) * 服务节点X (处理子任务A, 如用户认证) * 服务节点Y (处理子任务B, 如查询库存) * 服务节点Z (处理子任务C, 如创建订单) * **最终结果组合后返回给用户。** * **节点 X, Y, Z 各自负责系统的一部分功能,需要协作才能完成完整的用户请求。** 它们各自可能存储自己负责的数据。 **为什么需要它们?** * **集群:** 主要解决**单一服务的性能瓶颈高可用性**问题。当访问量太大,单个服务器撑不住时,加机器做集群是最直接的办法。同时,一台机器挂了,另一台能立刻顶上[^4]。 * **分布式系统:** 主要解决**单体应用过于庞大复杂、单机存储/计算能力不足**的问题。将大系统拆分成小服务,分别开发、部署、扩展,更灵活,更能应对海量数据高并发场景[^1][^2]。 **相互关联:** * 分布式系统中的**某个关键子服务**(如用户认证服务)本身**可能就是一个集群**,以提高该子服务的性能可用性。 * 一个大型系统往往是**分布式架构**,其内部的**各个组件或服务**又可能采用**集群部署**。例如,一个电商网站是分布式系统(用户服务、商品服务、订单服务等),而其中的商品服务可能部署在一个由多台服务器组成的集群上。 **简单来说:** * 看到一堆机器做**一模一样**的事,目标是**抗压、防死** -> **集群**。 * 看到一堆机器**各干各的活**(不同的活),但**合起来**完成一个大任务,目标是**拆解巨无霸、处理海量** -> **分布式系统**。 **相关问题:** 1. **CAP 理论如何应用于集群分布式系统的设计权衡?** (CAP - 一致性 Consistency, 可用性 Availability, 分区容错性 Partition Tolerance) 2. **分布式系统中常见的通信协议有哪些?它们如何解决网络不可靠的问题?** (如 RPC, REST, gRPC, 消息队列) 3. **在分布式系统设计中,如何保证数据的一致性?有哪些常用的一致性模型?** (如强一致性、最终一致性、BASE理论) 4. **微服务架构是分布式系统的一种实现方式吗?它带来了哪些优势挑战?** 5. **容器化技术(如 Docker)容器编排系统(如 Kubernetes)如何简化集群分布式系统的部署与管理?** [^1]: 引用说明了分布式系统是为了解决集中式系统的问题(大而复杂、单点故障、扩展性差),通过拆分系统并让拆分后的部分协同工作,对外提供统一服务。 [^2]: 引用清晰区分了集群分布式集群是相同业务的多副本,分布式是不同的子业务协作。并指出核心目标差异(集群提升单位时间任务数/吞吐量,分布式缩短单个任务时间/处理能力)。 [^3]: 引用提到分布式主要应对单机性能不足,并举例说明了分布式存储(如分库分表)分布式文件系统的应用场景。 [^4]: 引用解释了集群如何通过增加相同功能的节点来扩展服务能力,并通过负载均衡分配请求,提高可用性(单点故障不影响服务)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值