【线性代数】简要证明矩阵的秩等于行秩(列秩同理)

本文探讨了矩阵理论中一个关键概念:行列式不为0的k阶子式与存在k个线性无关列向量之间的等价性。通过分析列向量构成的方程组Ax=0,证明了两个条件的相互蕴含,揭示了矩阵秩、线性代数及化阶梯形在证明中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,此证明等价于证明:’存在行列式不为0的k阶子式‘ 与 ‘存在k个不相关的列向量’ 等价

从左到右:考虑对应的列向量建立的方程组Ax = 0,化阶梯形解得x1,x2......xk 必为0,所以此k个列向量线性无关

从右到左:若k个列向量不相关,将此k个向量拼成矩阵 [a1,a2......ak] ,此矩阵的秩必为k,化阶梯后留下的前k行对应的原行即为我们选择的行,选择的k行k列行列式不为0

 

<think>好的,用户想要查找线性代数矩阵运算的相关公式总结。首先,我需要确认用户的具体需求是什么。他们可能正在学习线性代数,需要一份清晰的矩阵运算公式汇总,用于复习或参考。根据用户提供的引用资料,特别是引用[1]和引用[2],这些资料涵盖了矩阵的基本定义、特殊矩阵类型、矩阵以及加法、减法、数乘和乘法运算。此外,用户提到的正交矩阵和反对称矩阵也可能需要包括进去。 接下来,我需要确保回答符合系统级指令的要求。所有内数学表达式必须用$...$,独立公式用$$...$$,并且正确使用LaTeX语法。同时,需要用中文回答,生成相关问题,并在引用处添加标识。 首先,我应该分点整理矩阵运算的公式,确保每个部分清晰。矩阵的基本运算包括加法、减法、数乘和乘法,这些在引用[1]中有提到。另外,特殊矩阵如正交矩阵和反对称矩阵在引用[2]中有涉及,需要包含它们的定义和性质。 要注意矩阵乘法的规则,例如只有当第一个矩阵等于第二个矩阵数时才能相乘,结果矩阵数如何确定。同时,矩阵的转置、逆矩阵的性质也是重点,特别是正交矩阵的逆等于其转置,这在引用[2]中有说明。 用户可能还关心矩阵式,尤其是正交矩阵式平方为1,这点需要强调。另外,矩阵在引用[1]中被提到,但用户的问题是关于运算公式,所以可能需要简要提及的定义,但主要聚焦在运算上。 生成的相关问题需要与矩阵运算相关,可能包括应用场景、特殊矩阵的作用、逆矩阵的计算方法等,确保问题能够帮助用户进一步深入学习。 最后,检查LaTeX格式是否正确,所有内公式使用$...$,独立公式单独成段,引用标识正确添加在对应的位置。例如,正交矩阵的定义应引用[^2],矩阵的基本运算引用[^1]。 现在,整理结构: 1. 基本运算:加法、减法、数乘、乘法,公式和条件。 2. 特殊矩阵:正交矩阵和反对称矩阵的定义和性质。 3. 转置与逆矩阵:公式及关系。 4. 式:正交矩阵式特性。 5. 矩阵简要说明。 相关问题部分,需要生成三个问题,覆盖运算应用、特殊矩阵的重要性以及逆矩阵计算等。 过程中需要确保每个公式正确无误,例如矩阵乘法的元素计算是否正确,转置和逆矩阵的关系是否准确,特别是正交矩阵的条件是否全面(AAᵀ = E 或 AᵀA = E是否足够,还是需要两者都满足?根据引用[2],正交矩阵的条件是AAᵀ = AᵀA = E,所以需要同时满足)。 最后,确认所有引用标识正确对应到引用资料,没有遗漏。</think>[用户可见层] ### 线性代数矩阵运算公式总结 #### 一、基本矩阵运算 1. **加减法** 若矩阵$A=(a_{ij})$与$B=(b_{ij})$为同型矩阵数相同),则: $$A \pm B = (a_{ij} \pm b_{ij})$$ 例如:$\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} + \begin{bmatrix}5 & 6\\7 & 8\end{bmatrix} = \begin{bmatrix}6 & 8\\10 & 12\end{bmatrix}$[^1] 2. **数乘运算** 标量$k$与矩阵$A=(a_{ij})$相乘: $$kA = (k \cdot a_{ij})$$ 3. **矩阵乘法** 若$A$是$m \times n$矩阵,$B$是$n \times p$矩阵,则乘积$C=AB$是$m \times p$矩阵,其中: $$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$$ 例如:$\begin{bmatrix}a & b\\c & d\end{bmatrix}\begin{bmatrix}e & f\\g & h\end{bmatrix} = \begin{bmatrix}ae+bg & af+bh\\ce+dg & cf+dh\end{bmatrix}$ --- #### 二、特殊矩阵运算性质 1. **正交矩阵** 满足$AA^{\mathsf{T}} = A^{\mathsf{T}}A = E$,且$|A|^2=1$,其逆矩阵为转置矩阵: $$A^{-1} = A^{\mathsf{T}}$$ 例如:旋转矩阵$\begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}$ 2. **反对称矩阵** 满足$A^{\mathsf{T}} = -A$,对角线元素为0,且非对角线元素满足$a_{ij} = -a_{ji}$[^2] --- #### 三、重要公式与性质 1. **转置运算规则** $$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}, \quad (A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$$ 2. **逆矩阵性质** 若$A$可逆,则: $$(AB)^{-1} = B^{-1}A^{-1}, \quad (A^{\mathsf{T}})^{-1} = (A^{-1})^{\mathsf{T}}$$ 3. **式性质** $$|AB| = |A| \cdot |B|, \quad |A^{\mathsf{T}}| = |A|$$ --- #### 四、矩阵 矩阵是其(或)向量组的极大无关组所含向量的个数。若矩阵$A$经过初等变换化为阶梯形矩阵后非零数为$r$,则$\text{rank}(A)=r$。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值