深度学习过拟合与正则化的理解

什么是过拟合?

        首先,要明确,我们可以用泰勒展开的思想,用多项式对函数进行拟合,所以理论上讲什么函数都可以通过多项式的方式拟合出来。

        低次多项式是高次多项式的子集,也就是说高次多项式所能拟合的函数种类更多,范围更广,更容易把正确的那个拟合函数包含进去,但随之而来的是待定系数增多,随着范围更广,也包含了更多错误的拟合函数,需要通过更多的条件舍去错误的,也就是说需要更多的训练数据去进行筛选训练,如果训练数据太少就容易导致筛选不充分,从而拟合函数误差较大。

        所以,越复杂的拟合函数需要的拟合数据越多,如果拟合函数复杂,训练数据很少就会反噬,就好像贪多嚼不烂,导致拟合不准确,产生过拟合。

什么是正则化?

看看上面回归模型的拟合程度

最左边的图,为欠拟合,泛化能力差,训练样本集准确率低,测试样本集准确率低。

最右边的图中,拟合程度非常高,甚至每一个点都能通过表达,这个难道就是我们所渴望得到的  吗?并不是!我们的数据集中无法避免的存在着许多噪声,而在理想情况下,我们希望噪声对我们的模型训练的影响为0。而如果模型将训练集中每一个点都精准描述出来,显然包含了许许多多噪声点,在后续的测试集中得到的准确率也不高。另一方面,太过复杂的  直接导致函数形状并不平滑,而会像图中那样拐来拐去,并不能起到预测的作用,“回归”模型也丧失了其预测能力(也就是模型泛化能力),也就是过拟合,泛化能力差,训练样本集准确率高,测试样本集准确率低。

中间的图中,展现的是最适合的拟合程度, 不过于复杂或过于简单,并且能够直观的预测函数的走向。虽然它在测试集的中准确列不及图三高,但在测试集中我们得到的准确率是最高的,同时泛化能力也是最强的,合适的拟合程度:泛化能力强,训练样本集准确率高,测试样本集准确率高

同样,在分类模型中也存在过拟合与欠拟合的情况

正则化是用来防止模型过拟合而采取的手段。我们对损失函数函数增加一个限制条件,限制其较高次的参数大小不能过大,通过这种规则去规范他们再接下来的循环迭代中,不要自我膨胀。

​​​​​​​正是那些高次项导致了过拟合的产生(若无限小就接近于0,就相当于低次了),所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了,正则化存在的意义,能帮助我们在训练模型的过程中,防止模型过拟合

怎么对模型做正则化?
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值