洛谷P4017 最大食物链计数题解

本文介绍了如何解决洛谷P4017问题,该问题涉及计算食物网中的最大食物链数量。通过建立单向连通图模型,利用动态规划的方法,从入度为0的节点开始递推,计算路径总数。最终对结果取模80112002输出。文章提供了算法分析和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图论

题目描述

给你一个食物网,你要求出这个食物网中最大食物链的数量。

(这里的“最大食物链”,指的是 生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。

由于这个结果可能过大,你只需要输出总数模上 80112002 的结果。

输入格式

第一行,两个正整数 n、m,表示生物种类 n 和吃与被吃的关系数 m。

接下来 m 行,每行两个正整数,表示被吃的生物A和吃A的生物B。

5 7 
1 2
1 3
2 3
3 5
2 5
4 5
3 4

输出格式

5

建立模型

本题给出一个单向连通图,需要输出图中所有入度为零的点到所有出度为零的点的路径数之和,如果不了解以上有关图的名词可以自行去搜索一下。

还是蒟个栗子吧,就拿样例来说:
图1

终点为点1的路径数为0,所以点1入度为0;

起点为点5的路径数为0,所以点5出度为0.

所以,题目所求的就是从点1到点5的路径总数,结果为5.
图2

1-->2-->5
1-->2-->3-->5
1-->2-->3-->4-->5
1-->3-->4-->5
1-->3-->5

算法分析

我们使用 in[i] 表示点i的入度数,out[i] 表示点i的出度数,a[i][n] 表示第n条以点i为起点的路径的终点。

不难发现,到某点的路径总数取决于,到 以这个点为终点的路径的起点 的路径数之和,用状态转移方程表示为
num[ i ] = num[ k1 ] + num[ k2 ] + ··· + num[ kn ](其中 k1 , k2 ··· kn表示以点 i 为终点的路径的起点)

如何实现呢?通过递推

我们从第入度为0的点开始递推,将所有与入度为0的点相连的点路径数都加上入度为0点的路径数,并将已经处理过后的点入度减一,这样在新一轮的遍历中就会出现新的一些入度为0的点,直到处理完所有的点后,将所有出度为0的值的点之和输出即可。
图片3

这里注意,因为数据量过大,要求对80112002取模,所以在进行更新时,要多次取模,防止超出数据范围。

代码实现

#include<iostream>
using namespace std;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值