[BZOJ4582][Usaco2016 Open]Diamond Collector(二分+st表)

本文介绍了一种解决一维货架放置问题的方法。通过先对物品进行排序,然后使用一次扫描算法来确定每个物品能够放置的最远位置及长度,最后结合线段树查询来找出最优解。该算法避免了不必要的二分搜索和复杂的数据结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

传送门

题解

先排序是显然的吧= =
求出每一个点它向右能连续放到一个架子上的最右的一端和最长长度,因为是满足单调性的,其实扫一遍就可以,然而我当时dt写了个二分。。
然后对于一个点,再求它最右端的右边一直到n的最长长度的最大值。又写了个st表。。实际上从右向左扫一遍就可以。。。

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 50005
#define sz 16

int n,k,ans;
int val[N],len[N],loc[N];
int lg2[N],st[N][sz+5];

int find(int i)
{
    int l=i,r=n,mid,ans;
    while (l<=r)
    {
        mid=(l+r)>>1;
        if (val[mid]-val[i]<=k) ans=mid,l=mid+1;
        else r=mid-1;
    }
    return ans;
}
void init()
{
    for (int i=1,p=0;i<=n;++i)
    {
        while ((1<<p)<=i) p++;
        lg2[i]=p-1;
    }
    for (int i=1;i<=n;++i) st[i][0]=len[i];
    for (int j=1;j<=sz;++j)
        for (int i=1;i<=n;++i)
            if (i+(1<<j)-1<=n)
                st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
int query(int l,int r)
{
    if (l>r) return 0;
    int k=lg2[r-l+1];
    return max(st[l][k],st[r-(1<<k)+1][k]);
}
int main()
{
    scanf("%d%d",&n,&k);
    for (int i=1;i<=n;++i) scanf("%d",&val[i]);
    sort(val+1,val+n+1);
    for (int i=1;i<=n;++i)
    {
        loc[i]=find(i);
        len[i]=loc[i]-i+1;
    }
    init();
    for (int i=1;i<=n;++i)
        ans=max(ans,len[i]+query(loc[i]+1,n));
    printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值