本地部署大模型 | GraphRAG + Ollama 本地部署全攻略

一、为什么要对 GraphRAG 本地部署?

微软开源 GraphRAG 后,热度越来越高,目前 GraphRAG 只支持 OpenAI 的闭源大模型,导致部署后使用范围大大受限,本文通过 GraphRAG 源码的修改,来支持更广泛的 Embedding 模型和开源大模型,从而使得 GraphRAG 的更容易上手使用。

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python

二、GraphRAG 一键安装

第一步、安装 GraphRAG

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_02

需要 Python 3.10-3.12 环境。

第二步、创建知识数据文件夹

安装完整后,需要创建一个文件夹,用来存储你的知识数据,目前 GraphRAG 只支持 txt 和 csv 格式。

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_AI大模型_03

第三步、准备一份数据放在 /ragtest/input 目录下

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_04

第四步、初始化工作区

首先,我们需要运行以下命令来初始化。

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_05

其次,我们第二步已经准备了 ragtest 目录,运行以下命令完成初始化。

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_06

运行完成后,在 ragtest 目录下生成以下两个文件:.envsettings.yaml。ragtest 目录下的结构如下:

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_AI大模型_07

.env 文件包含了运行 GraphRAG 管道所需的环境变量。如果您检查该文件,您会看到一个定义的环境变量,GRAPHRAG_API_KEY=<API_KEY>。这是 OpenAI API 或 Azure OpenAI 端点的 API 密钥。您可以用自己的 API 密钥替换它。

settings.yaml 文件包含了管道的设置。您可以修改此文件以更改管道的设置。

三、修改配置文件支持本地部署大模型

第一步、确保已安装 Ollama

第二步、确保已安装以下本地模型

Embedding 嵌入模型
  quentinz/bge-large-zh-v1.5:latest
LLM 大模型
  gemma2:9b

第三步、修改 settings.yaml 以支持以上两个本地模型,以下是修改后的文件

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ollama
  type: openai_chat # or azure_openai_chat
  model: gemma2:9b # 你 ollama 中的本地 llm 模型,可以换成其他的,只要你安装了就可以
  model_supports_json: true # recommended if this is available for your model.
  max_tokens: 2048
  api_base: http://localhost:11434/v1 # 接口注意是v1
  concurrent_requests: 1 # the number of parallel inflight requests that may be made

parallelization:
  stagger: 0.3

async_mode: threaded # or asyncio

embeddings:
  async_mode: threaded # or asyncio
  llm:
    api_key: ollama
    type: openai_embedding # or azure_openai_embedding
    model: quentinz/bge-large-zh-v1.5:latest # 你 ollama 中的本地 Embeding 模型,可以换成其他的,只要你安装了就可以
    api_base: http://localhost:11434/api # 注意是 api
    concurrent_requests: 1 # the number of parallel inflight requests that may be made
chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"

entity_extraction:
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 0

summarize_descriptions:
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 0

community_report:
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  max_tokens: 5000

global_search:
  max_tokens: 5000

第四步、运行 GraphRAG 构建知识图谱索引

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_人工智能_08

构建知识图谱的索引需要一定的时间,构建过程如下所示:

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_09

四、修改源码支持本地部署大模型

接下来修改源码,保证进行 local 和 global 查询时给出正确的结果。

第一步、修改成本地的 Embedding 模型

修改源代码的目录和文件:

…/Python/Python310/site-packages/graphrag/llm/openai/openai_embeddings_llm.py"

修改后的源码如下:

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""The EmbeddingsLLM class."""

from typing_extensions import Unpack

from graphrag.llm.base import BaseLLM
from graphrag.llm.types import (
    EmbeddingInput,
    EmbeddingOutput,
    LLMInput,
)

from .openai_configuration import OpenAIConfiguration
from .types import OpenAIClientTypes
import ollama


class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    """A text-embedding generator LLM."""

    _client: OpenAIClientTypes
    _configuration: OpenAIConfiguration

    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self.client = client
        self.configuration = configuration

    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
    ) -> EmbeddingOutput | None:
        args = {
            "model": self.configuration.model,
            **(kwargs.get("model_parameters") or {}),
        }
        embedding_list = []
        for inp in input:
            embedding = ollama.embeddings(model="quentinz/bge-large-zh-v1.5:latest",prompt=inp)
            embedding_list.append(embedding["embedding"])
        return embedding_list
        # embedding = await self.client.embeddings.create(
        #     input=input,
        #     **args,
        # )
        # return [d.embedding for d in embedding.data]

第二步、继续修改 Embedding 模型

修改源代码的目录和文件:

…/Python/Python310/site-packages/graphrag/query/llm/oai/embedding.py"

修改后的源码如下:

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""OpenAI Embedding model implementation."""

import asyncio
from collections.abc import Callable
from typing import Any

import numpy as np
import tiktoken
from tenacity import (
    AsyncRetrying,
    RetryError,
    Retrying,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential_jitter,
)

from graphrag.query.llm.base import BaseTextEmbedding
from graphrag.query.llm.oai.base import OpenAILLMImpl
from graphrag.query.llm.oai.typing import (
    OPENAI_RETRY_ERROR_TYPES,
    OpenaiApiType,
)
from graphrag.query.llm.text_utils import chunk_text
from graphrag.query.progress import StatusReporter

from langchain_community.embeddings import OllamaEmbeddings



class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
    """Wrapper for OpenAI Embedding models."""

    def __init__(
        self,
        api_key: str | None = None,
        azure_ad_token_provider: Callable | None = None,
        model: str = "text-embedding-3-small",
        deployment_name: str | None = None,
        api_base: str | None = None,
        api_version: str | None = None,
        api_type: OpenaiApiType = OpenaiApiType.OpenAI,
        organization: str | None = None,
        encoding_name: str = "cl100k_base",
        max_tokens: int = 8191,
        max_retries: int = 10,
        request_timeout: float = 180.0,
        retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,  # type: ignore
        reporter: StatusReporter | None = None,
    ):
        OpenAILLMImpl.__init__(
            self=self,
            api_key=api_key,
            azure_ad_token_provider=azure_ad_token_provider,
            deployment_name=deployment_name,
            api_base=api_base,
            api_version=api_version,
            api_type=api_type,  # type: ignore
            organization=organization,
            max_retries=max_retries,
            request_timeout=request_timeout,
            reporter=reporter,
        )

        self.model = model
        self.encoding_name = encoding_name
        self.max_tokens = max_tokens
        self.token_encoder = tiktoken.get_encoding(self.encoding_name)
        self.retry_error_types = retry_error_types

    def embed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's sync function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        Please refer to: https:///openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        for chunk in token_chunks:
            try:
                embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)
                chunk_embeddings.append(embedding)
                chunk_lens.append(chunk_len)
            # TODO: catch a more specific exception
            except Exception as e:  # noqa BLE001
                self._reporter.error(
                    message="Error embedding chunk",
                    details={self.__class__.__name__: str(e)},
                )

                continue
        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    async def aembed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's async function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        embedding_results = await asyncio.gather(*[
            self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks
        ])
        embedding_results = [result for result in embedding_results if result[0]]
        chunk_embeddings = [result[0] for result in embedding_results]
        chunk_lens = [result[1] for result in embedding_results]
        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)  # type: ignore
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    def _embed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = Retrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            for attempt in retryer:
                with attempt:
                    embedding = (
                        OllamaEmbeddings(
                            model=self.model,
                        ).embed_query(text)
                        or []
                    )
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

    async def _aembed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = AsyncRetrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            async for attempt in retryer:
                with attempt:
                    embedding = (
                        await OllamaEmbeddings(
                            model=self.model,
                        ).embed_query(text) or [] )
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

五、GraphRAG 效果测试

第一、local 查询

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_10

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_大模型_11

第二、global 查询

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_python_12

大模型 | GraphRAG + Ollama 本地部署全攻略:避坑实战指南_人工智能_13


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

<think>好的,我现在需要帮助用户了解GraphRAG的运行和部署方法。根据用户提供的引用内容,我需要整理出相关的步骤和注意事项。首先,用户提到了三个引用,分别是关于本地GraphRAG UI的教程、GraphRAG的原理及部署实战,以及本地部署全攻略。我需要综合这些信息,分步骤说明如何部署和运行GraphRAG。 首先,引用[1]提到Microsoft GraphRAG本地搜索方法,可能需要配置一些本地环境。引用[2]则强调了配置LLM的模型和API基地址,确保GraphRAG能访问到大模型API。引用[3]详细说明了本地部署的步骤,包括安装Ollama、下载模型、配置环境等,还提到了不同模型的选择,比如Gemma 2B适合初学者。 接下来,我需要将这些信息结构化。可能需要分为环境准备、模型选择、配置GraphRAG、运行与测试这几个步骤。同时,用户可能遇到的常见问题也需要指出,比如模型路径错误或API配置问题,引用[3]提到了需要检查模型路径是否正确,引用[2]指出API配置错误可能无法访问大模型。 需要注意用户可能对某些步骤不太熟悉,比如如何安装Ollama或者配置环境变量,需要详细说明。另外,引用不同的地方要正确标注引用标识,比如在安装Ollama时引用[3],配置LLM时引用[2]和[3]。 还需要检查是否有遗漏的步骤,比如是否需要安装额外的依赖库,或者是否有权限问题需要考虑。引用[3]提到需要安装Python依赖,可能需要补充这一点。此外,模型下载后的运行命令,如ollama run qwen,也需要明确说明。 最后,生成的相关问题需要围绕部署中的关键点,比如模型选择、配置步骤、优化方法等,确保用户能进一步了解相关内容。同时,所有数学公式或代码块要按照用户的要求使用正确的LaTeX格式,但当前问题中可能涉及较少数学内容,主要关注代码和配置步骤。 总结下来,回答的结构应该是分步骤的教程,每个步骤结合对应的引用,指出常见问题和解决方法,最后生成相关问题。需要确保语言清晰,步骤明确,引用正确。</think>### GraphRAG 运行与部署教程 #### 一、环境准备 1. **安装Ollama** 用于本地运行大模型,支持Llama、Mistral、Gemma等开源模型。 ```bash curl -fsSL https://ollama.com/install.sh | sh # 安装Ollama ``` 安装后需启动服务:`systemctl start ollama`[^3]。 2. **下载模型** 根据需求选择模型,例如: - **Gemma 2B**(轻量级,适合初学者) - **Llama 7B**(中等规模) - **Qwen**(千问大模型) ```bash ollama pull qwen # 下载千问模型 ``` #### 二、配置GraphRAG 1. **设置LLM访问** 在GraphRAG配置文件中指定模型名称和API地址。例如: ```python # config.yaml llm: model: "qwen" # 使用的模型名称 api_base: "http://localhost:11434" # Ollama默认API地址 ``` 确保`api_base`指向正确的本地服务地址[^2]。 2. **依赖安装** 安装Python依赖库(如`requests`、`langchain`等): ```bash pip install -r requirements.txt ``` #### 三、运行与测试 1. **启动本地模型服务** 运行下载的模型: ```bash ollama run qwen # 启动千问模型 ``` 2. **启动GraphRAG应用** 执行主程序,加载配置并运行: ```python python main.py --config config.yaml ``` #### 四、常见问题 - **模型加载失败**:检查模型路径和名称是否匹配,确保`ollama pull`已完成[^3]。 - **API连接错误**:确认`api_base`地址和端口是否正确,Ollama服务是否运行[^2]。 - **内存不足**:选择更小的模型(如Gemma 2B)或增加系统内存。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值