手把手教你用LangChain+Qwen3+BGEM3搭建本地RAG系统,小白也能学会的大模型部署指南

本文详细介绍了如何使用LangChain框架整合Qwen3大模型与BGE-M3嵌入模型,搭建一个可本地运行的端到端RAG系统。通过4位量化技术降低硬件门槛至8GB显存,解决了大模型知识时效性差、个性化能力弱、易产生幻觉等问题。文章从环境准备到代码实现提供了完整指南,包括文档处理、向量库创建、问答交互等核心模块,帮助开发者构建专属文档问答机器人。

在大模型这个时期,“私有化部署”以及“个性化问答”成了企业和开发者的关键需求。要是想让AI根据特定的文档(像公司手册、技术文档、学术论文等)来回答问题,并且还担忧数据隐私会被泄漏出去,那检索增强生成(RAG就是最棒的解决办法。

本文将带大家从零开始,用LangChain框架整合Qwen3大模型与BGE-M3嵌入模型,手戳一个可本地运行的端到端RAG系统。无需复杂云服务,只需一台带GPU的电脑,就能拥有专属的“文档问答机器人”。

一、为什么选择RAG?聊聊大模型的“知识痛点”

在正式动手前,我们先搞懂一个核心问题:为什么需要RAG?

大模型像GPT-4和Qwen这类的呢,虽然可以应对很多很多的通用问题,可是它们有两个特别要命的缺点:

1.知识时效性不太好:训练数据截止到某个特定的时间(就像Qwen3训练数据截止到2024年初那样),没办法获取最新的信息;

2.个性化能力弱:无法理解企业内部文档、个人笔记等私有数据;

3.易产生“幻觉”:对不确定的问题会编造看似合理的答案,无法溯源信息来源。

而RAG通过“检索生成”的组合完美解决这些问题:

  • 检索:从本地文档库中精准找到与问题相关的片段;

  • 生成:让大模型基于检索到的“事实依据”回答问题,确保答案准确、可溯源

直接讲RAG就像是给大模型安上了一个本地的知识仓库,既能让大模型具备语言理解的能力,又能把数据隐私和知识专属的问题给解决了。

二、技术选型:为什么是LangChain+Qwen3+BGEM3?

搭建RAG系统得有三大关键组件,分别是文档处理框架、大语言模型(LLM以及嵌入模型(Embedding)。我们在选择这些组件时,主要从“本地化、对中文友好、资源消耗低”这个方面去考虑的:

组件类型选型核心优势
文档处理框架LangChain一站式整合文档加载、分割、向量存储、检索链,降低开发门槛
大语言模型(LLM)Qwen3-7B-Instruct阿里达摩院开源模型,中文处理能力强,7B 参数支持 4 位量化,本地 GPU 可运行
嵌入模型(Embedding)BAAI/bge-m3中科院自动化所开源,中文嵌入效果顶尖,支持检索优化指令,精度高于传统模型
向量数据库Chroma轻量级本地向量库,无需复杂部署,支持持久化存储,适配 LangChain

除此之外,我们还用到BitsAndBytes量化技术,将Qwen3-7B模型压缩到4位精度,原本需要24GB显存的模型,现在8GB显存就能运行,大大降低硬件门槛。

三、手把手搭建:从环境准备到代码实现

接着开始实战部分啦,咱们把RAG系统搭建分成4步来进行,每一步都有着详细的讲解呢,就算是新手也能够很顺畅地跟得上哟。

3.1 环境准备:安装依赖库

先确定你的电脑已安装了Python3.8以及更高版本,与此同时拥有NVIDIAGPU(显存最好大于或等于8GB)。接着打开终端,接着执行以下这些命令来安装依赖:

# 基础依赖
pip install langchain chromadb transformers torch

# 文档加载与处理
pip install sentence-transformers python-dotenv

# 量化相关(4位量化需要)
pip install bitsandbytes accelerate

# 可选:如果需要处理PDF/Word文档,安装额外加载器
pip install pypdf python-docx

3.2 核心代码解析:从配置到问答的全流程

我们的代码分为5个核心模块:配置类、RAG系统初始化、文档处理、向量库加载、问答交互。下面逐模块拆解,理解每个环节的作用。

  1. 配置类:统一管理参数,便于修改

先对Config类进行定义,把文档路径、模型名称、量化配置等这些参数都集中到一起进行管理,这样之后要是需要修改的话,就不用到处去寻找代码啦:

classConfig:
# 文档相关:指定文档存放目录、分块大小
    DOCUMENTS_DIR = "documents"# 本地文档目录(需手动创建)
    CHUNK_SIZE = 500# 每个文本块的字符数(中文适配)
    CHUNK_OVERLAP = 50# 块间重叠字符数(避免分割丢失上下文)

# 模型相关:指定嵌入模型和LLM
    EMBEDDING_MODEL_NAME = "BAAI/bge-m3"# 中文嵌入效果顶尖
    LLM_MODEL_NAME = "Qwen/Qwen3-7B-Instruct"# 中文友好的7B模型

# 检索相关:向量库存储路径、检索数量
    VECTOR_DB_DIR = "vector_db_qwen_bge_m3"# 向量库持久化目录
    TOP_K = 3# 每次检索返回3个相关片段

# 量化配置:降低显存占用
    USE_4BIT_QUANTIZATION = True# 启用4位量化(8GB显存必备)
  1. RAG系统初始化:加载嵌入模型与LLM

RAGSystem类是核心,负责初始化嵌入模型和LLM,这是系统的“大脑”和“眼睛”:

. 嵌入模型BGEM3):将文本转化为向量数字),用于后续检索

  • LLM(Qwen3):基于检索到的文本片段生成自然语言回答

(1)初始化嵌入模型:给文本“编数字”

BGEM3有一个关键优化:支持查询指令,能让查询向量更精准。例如在生成查询向量时,添加“为这个句子生成表示以用于检索相关文章:”前缀提升检索命中率:

def_init_embeddings(self):
    print(f"加载BGE-M3嵌入模型: {self.config.EMBEDDING_MODEL_NAME}")
# BGE-M3专属查询指令,优化中文检索效果
    query_instruction = "为这个句子生成表示以用于检索相关文章:"
return HuggingFaceBgeEmbeddings(
        model_name=self.config.EMBEDDING_MODEL_NAME,
        model_kwargs={'device': 'cuda'if torch.cuda.is_available() else'cpu'},
        encode_kwargs={'normalize_embeddings': True}, # 向量归一化,提升检索精度
        query_instruction=query_instruction
    )

(2)初始化LLM:给系统“装大脑”

Qwen3-7B模型默认需要24GB显存,我们通过4位量化将其压缩到8GB以内。这个时候Qwen有专属的提示词格式(<|im_start|>/<|im_end|>),需要自定义格式函数适配:

def_init_llm(self):
    print(f"加载Qwen3模型: {self.config.LLM_MODEL_NAME}")

# 4位量化配置:关键优化,降低显存占用
    quantization_config = None
if self.config.USE_4BIT_QUANTIZATION and torch.cuda.is_available():
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True, # 双重量化,进一步压缩
            bnb_4bit_quant_type="nf4", # 适配大模型的量化类型
            bnb_4bit_compute_dtype=torch.float16
        )

# 加载tokenizer和模型(device_map="auto"自动分配GPU/CPU)
    tokenizer = AutoTokenizer.from_pretrained(self.config.LLM_MODEL_NAME)
    model = AutoModelForCausalLM.from_pretrained(
        self.config.LLM_MODEL_NAME,
        quantization_config=quantization_config,
        device_map="auto",
        torch_dtype=torch.float16,
        trust_remote_code=True# 加载Qwen的自定义代码
    )

# Qwen专属提示词格式:必须严格遵循,否则模型无法正常响应
defqwen_prompt_format(prompt):
returnf"<|im_start|>system\n你是一个 helpful 的助手,基于提供的上下文回答问题。<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"

# 创建文本生成pipeline,包装成LangChain的LLM
    pipe = pipeline(
"text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=500, # 最大生成500个字符
        temperature=0.7, # 随机性:0=严谨,1=灵活
        repetition_penalty=1.1, # 避免重复生成
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        prompt_format_template=qwen_prompt_format
    )

return HuggingFacePipeline(pipeline=pipe)
  1. 文档处理:从“原始文档”到“向量库”

文档处理是RAG的“地基”,直接影响检索精度。这一步分为3个关键操作:加载文档→分割文档→创建向量库。

(1) 加载文档:支持多格式(TXT/PDF/Word)

我们用DirectoryLoader批量加载documents目录下的文档,默认支持TXT格式,若需处理PDF/Word,只需替换loader\_clsPyPDFLoader/Docx2txtLoader

defload_and_process_documents(self):
    start_time = time.time()

# 加载文档:glob="*.txt"指定只加载TXT文件
    loader = DirectoryLoader(
        self.config.DOCUMENTS_DIR,
        glob="*.txt",
        loader_cls=TextLoader,
        loader_kwargs={"encoding": "utf-8"} # 解决中文乱码问题
    )
    documents = loader.load()

ifnot documents:
raise ValueError(f"请在 {self.config.DOCUMENTS_DIR} 目录中添加文档")
    print(f"成功加载 {len(documents)} 个文档")

(2)分割文档:中文适配的“黄金分割点”

大模型有上下文长度限制(如Qwen3-7B支持8k tokens),若直接将长文档传入,会丢失上下文。我们用RecursiveCharacterTextSplitter按中文标点分割,避免将完整句子切散:

# 分割文档:按“段落→句子→标点”分层分割,保留中文语义
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=self.config.CHUNK_SIZE,
    chunk_overlap=self.config.CHUNK_OVERLAP,
    separators=["\n\n", "\n", "。", ",", ";", "、", " ", ""] # 中文优先分割符
)
texts = text_splitter.split_documents(documents)
print(f"文档分割完成,得到 {len(texts)} 个文本块")

(3)创建向量库:将文本块“存入数据库”

用Chroma向量库存储文本块的向量,后续检索时,只需将问题转化为向量,与库中的向量计算相似度,就能快速找到相关片段:

# 创建并持久化向量库:下次运行可直接加载,无需重新处理
self.vector_db = Chroma.from_documents(
    documents=texts,
    embedding=self.embeddings,
    persist_directory=self.config.VECTOR_DB_DIR
)
self.vector_db.persist()

# 创建检索链:将“检索”与“生成”串联
self.qa_chain = RetrievalQA.from_chain_type(
    llm=self.llm,
    chain_type="stuff", # 简单高效:将所有相关片段传入LLM
    retriever=self.vector_db.as_retriever(search_kwargs={"k": self.config.TOP_K}),
    return_source_documents=True# 返回源文档,便于溯源
)

end_time = time.time()
print(f"文档处理完成,耗时 {end_time - start_time:.2f} 秒")
  1. 问答交互:从“问题”到“答案”的闭环

最后,实现query方法,接收用户问题,调用检索链生成答案,并返回源文档片段(便于验证答案准确性):

defquery(self, question: str):
ifnot self.qa_chain:
raise ValueError("请先加载文档或向量库")

    start_time = time.time()
    print(f"处理查询: {question}")

# 执行检索增强生成:先检索相关片段,再生成答案
    result = self.qa_chain({"query": question})

    end_time = time.time()
    print(f"查询处理完成,耗时 {end_time - start_time:.2f} 秒")

return result
  1. 主函数:一键运行系统

if name == "main":中,我们实现“自动创建示例文档→初始化系统→加载向量库→测试问答”的全流程:

if __name__ == "__main__":
    os.environ["TOKENIZERS_PARALLELISM"] = "false"# 避免tokenizer并行警告

# 初始化配置与系统
    config = Config()
    rag_system = RAGSystem(config)

# 首次运行:创建示例文档(数据科学、LLM应用相关)
ifnot os.listdir(config.DOCUMENTS_DIR):
        print("创建示例文档...")
        create_sample_documents(config.DOCUMENTS_DIR)

# 加载向量库:存在则直接加载,不存在则重新处理文档
ifnot rag_system.load_existing_vector_db():
        rag_system.load_and_process_documents()

# 测试中文问答
    test_questions = [
"数据科学工作流包括哪些步骤?",
"大语言模型有哪些主要应用场景?"
    ]

# 输出结果:包含答案和源文档片段
for question in test_questions:
        print("\n" + "="*80)
        print(f"问题: {question}")
        result = rag_system.query(question)

        print("\n回答:")
        print(result["result"])

        print("\n相关文档片段:")
for i, doc in enumerate(result["source_documents"], 1):
            print(f"\n文档 {i}:")
            print(f"来源: {doc.metadata['source']}")
            print(f"内容: {doc.page_content[:200]}...")

四、运行测试:看看系统实际效果

将代码保存为rag\_qwe\_bge.py,执行以下命令运行:

python rag_qwen_bge.py

首次运行时,系统会自动:

  1. documents目录创建2个示例文档(数据科学、LLM应用);
  2. 下载BGE-M3和Qwen3-7B模型(约10GB,需耐心等待);
  3. 处理文档并创建向量库,存入vector*db*qwen*bge*m3目录。

运行成功后,会输出如下结果(以“数据科学工作流包括哪些步骤?”为例):

================================

问题: 数据科学工作流包括哪些步骤?
处理查询: 数据科学工作流包括哪些步骤?
回答:
数据科学工作流通常包括以下9个步骤:
问题定义:明确业务问题和分析目标,这是整个工作流的基础,确保后续工作围绕核心需求展开;
数据收集:获取相关的结构化(如数据库表)和非结构化(如文本、图片)数据;
数据清洗:处理数据中的缺失值、异常值和重复数据,保证数据质量,避免影响后续分析结果;
探索性数据分析:通过统计方法和可视化工具,理解数据分布、变量关系等,挖掘数据潜在规律;
特征工程:对原始数据进行转换、筛选或创建新特征,生成适合机器学习模型输入的特征;
模型构建:根据问题类型(如分类、回归)选择适当的机器学习模型,并使用清洗后的数据集进行训练;
模型评估:使用准确率、召回率、RMSE等指标评估模型性能,判断模型是否满足业务需求;
结果部署:将训练好的模型集成到业务流程中(如API接口、业务系统),实现实际应用;
监控与更新:持续监控模型在实际场景中的性能,当数据分布或业务需求变化时,定期更新模型。

相关文档片段:
文档 1:
来源: documents/data_science.txt
内容: 数据科学是一个跨学科领域,结合了统计学、机器学习、数据可视化和领域知识,
用于从结构化和非结构化数据中提取有价值的 insights。
数据科学工作流通常包括以下步骤:
问题定义:明确业务问题和分析目标
数据收集:获取相关的结构化和非结构化数据
数据清洗:处理缺失值、异常值和重复数据
探索性数据分析:理解数据分布和变量关系
特征工程:创建适合建模的特征
模型构建:选择和训练适当的机器学习模型
模型评估:使用合适的指标评估模型性能
结果部署:将模型集成到业务流程中
监控与更新:持续监控模型性能并定期更新

五、总结:展望,一点建议

  1. 本文针对企业私有化、个性化问答需求,提供了基于LangChain+Qwen3+BGEM3的本地RAG系统搭建全流程,通过4位量化技术降低硬件门槛至8GB显存,新手也能落地。
  2. 这个方案通过“检索生成”这种方式,把大模型存在的知识会过时、容易产生“幻觉”以及没法适应私有数据这些难题给解决了,既保障了数据的安全,又保证了回答的准确性。
  3. 以后本地RAG会朝着更轻、更多种模式的方向去发展呢,给新手的建议是先从最基本的文本开始,把流程熟悉起来,等过了这一步之后呢,就可以去摸索参数的优化以及多种技术融合这样更高级的东西啦。

如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值