hdu-6158-圆的反演

本文介绍了一道计算几何题目,通过圆的反演原理解决多个内切圆之间的面积计算问题。给出两个内切的圆,一大一小,在两个圆之间放置n个小圆,求这些小圆的总面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6158


题意:




给你两个内切的圆的半径,一大一小,在两个圆之间放n个小圆(如图),求n个小圆的总面积。


思路:


设给定的两个圆,大圆的半径为r1,小圆的半径为r2,那么r1与r2之间圆1的半径为r2-r1,

由于每个小圆的半径求法类似,只要能求出圆2的半径,就可以求出圆3,4,5,...,n的半径。

现在问题转化为了,四个圆两两相切,已知三个圆的半径,求第四个圆的半径。


赛后学习了一下,这个可以用圆的反演来求,下面介绍一下圆的反演:


首先有一个圆O作为反演圆,取圆O的圆心作为反演中心,圆O的半径R作为反演半径,现在有一点P,P经过反演中心O反演之后变成P2,那么,,如图,O、P、P2三点共线且|OP| * |OP2| = R^ 2



不经过反演中心的圆反演之后还是圆:



经过反演中心的圆反演后是一条直线:





对于这个题,取大圆r1与小圆r2的切点作为反演中心,任取一个反演半径,分别对大圆r1,r2,圆1,圆2做反演变换:



设直线BL与圆2的交点为P1, Q1,直线 BL与圆2的反演圆交点为P2,Q2,

BM,ML的长度根据已知条件可以求出,所以可以求出线段BL,BP2, BQ2的长度,

由于P2,Q2是P1,Q1的反演点,所以可以求出BP1,BQ1的长度,这样圆2的半径r = (BQ1 - BP1) / 2,

其他圆半径的求法类似。。。


知道半径如何求就可以求面积了。。。这个题给的n特别大,直接枚举求面积会超时,容易知道,当n特别大时,

小圆的半径会特别小,它的面积可以忽略不计,所以设置一个eps来控制精度(这个地方特别坑,需要选取合适的精度,精度调的太低了会WA,调的太高了会TLE。。。),当面积小到一定程度时,不再计算,直接退出。



代码:


# include <iostream>
# include <algorithm>
# include <cstdio>
# include <cstring>
# include <cmath>
using namespace std;
typedef long long ll;
const double eps = 1e-13;
const double pi = acos(-1.0);
int r1, r2, n;

double sqr(double x) {
    return x * x;
}

int main(void)
{
    int T; scanf("%d", &T);
    while (T-- && scanf("%d %d %d", &r1, &r2, &n)) {
        if (r1 < r2) swap(r1, r2);
        double r3 = r1 - r2;
        double ans = sqr(r3);
        --n;
        double R = 2 * r1;
        double x1 = R, x2 = sqr(R) / (2 * r2);
        double r = (x2 - x1) / 2;
        double L = R + r;
        for (int i = 0, j = 1; i < n; i += 2, ++j) {
            double t = sqrt(sqr(L) + sqr(2 * j * r));
            double t1 = t - r, t2 = t + r;
            double s1 = sqr(R) / t1, s2 = sqr(R) / t2;
            double tmpr = (s1 - s2) / 2;
            double tmp = sqr(tmpr);
            if (tmp < eps) break;
            if (i + 1 == n) ans += tmp;
            else ans += 2 * tmp;
        }
        printf("%.5lf\n", ans * pi);
    }

    return 0;
}


HDU-3480 是一个典型的动态规划问题,其题目标题通常为 *Division*,主要涉及二维费用背包问题或优化后的动态规划策略。题目大意是:给定一个整数数组,将其划分为若干个连续的子集,每个子集最多包含 $ m $ 个元素,并且每个子集的最大值与最小值之差不能超过给定的阈值 $ t $,目标是使所有子集的划分代价总和最小。每个子集的代价是该子集最大值与最小值的差值。 ### 动态规划思路 设 $ dp[i] $ 表示前 $ i $ 个元素的最小代价。状态转移方程如下: $$ dp[i] = \min_{j=0}^{i-1} \left( dp[j] + cost(j+1, i) \right) $$ 其中 $ cost(j+1, i) $ 表示从第 $ j+1 $ 到第 $ i $ 个元素构成一个子集的代价,即 $ \max(a[j+1..i]) - \min(a[j+1..i]) $。 为了高效计算 $ cost(j+1, i) $,可以使用滑动窗口或单调队列等数据结构来维护区间最大值与最小值,从而将时间复杂度优化到可接受的范围。 ### 示例代码 以下是一个简化版本的动态规划实现,使用暴力方式计算区间代价,适用于理解问题结构: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 10010; int a[MAXN]; int dp[MAXN]; int main() { int T, n, m; cin >> T; for (int Case = 1; Case <= T; ++Case) { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = INF; int mn = a[i], mx = a[i]; for (int j = i; j >= max(1, i - m + 1); --j) { mn = min(mn, a[j]); mx = max(mx, a[j]); if (mx - mn <= T) { dp[i] = min(dp[i], dp[j - 1] + mx - mn); } } } cout << "Case " << Case << ": " << dp[n] << endl; } return 0; } ``` ### 优化策略 - **单调队列**:可以使用两个单调队列分别维护当前窗口的最大值与最小值,从而将区间代价计算的时间复杂度从 $ O(n^2) $ 降低到 $ O(n) $。 - **斜率优化**:若问题满足特定的决策单调性,可以考虑使用斜率优化技巧进一步加速状态转移过程。 ### 时间复杂度分析 原始暴力解法的时间复杂度为 $ O(n^2) $,在 $ n \leq 10^4 $ 的情况下可能勉强通过。通过单调队列优化后,可以稳定运行于 $ O(n) $ 或 $ O(n \log n) $。 ### 应用场景 HDU-3480 的问题模型可以应用于资源调度、任务划分等场景,尤其适用于需要控制子集内部差异的问题,如图像分块压缩、数据分段处理等[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值