关于 法向量 的世界空间变换矩阵

本文探讨了3D图形中顶点从本地坐标系变换到世界坐标系的过程,特别是法向量变换的细节。作者通过实践发现,当仅使用旋转和平移变换时,法向量直接乘以世界矩阵也能正确计算光照效果,这是因为这种情况下世界矩阵实质上是一个正交矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前看过一些文章,说道mesh顶点的空间变换,从本地坐标系变换到世界坐标系,位置信息是乘以世界矩阵,而点的法向量要变换到世界空间下,是要乘以世界矩阵的逆矩阵的转置矩阵。网上有关于这样做的证明。只是之前在项目中,一开始我并不知道要这样做,都是乘以世界矩阵,但是用于光照方程,或者说计算球形贴图坐标的时候,也并没有出错,最后的效果都是满意的,疑惑了很久。

最近翻看《实时计算机图形学》一说,才明白其中原因。因为项目中我用到的世界矩阵中,大部分都是只包括了平移信息和旋转信息,没有去做scale的变换,都是1:1的比例在绘制。问题就在这里,因为法向量是一个方向向量,不是矢量,在变换的过程中,把法向量变为齐次坐标的时候,W分量要设置为0,也就是忽略了平移变换。所以这个世界矩阵就可以看成是一个3*3的旋转举证,而所有的旋转矩阵都是正交矩阵。正交矩阵有一个特性,就是正交举证的逆矩阵等于他的转置矩阵。所以正交矩阵的逆矩阵的转置矩阵就是正交矩阵的转置矩阵的转置矩阵,也就是正交矩阵自己(上面一段话很绕口啊)!

所以,这时候的世界矩阵的逆矩阵的转置矩阵就是世界矩阵,所以我得到了想要的结果。如果出现了scale信息,且各个轴不是1:1的比例的话。这时候的世界矩阵就不能算是正交的,就会出现问题。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值