无需ReID网络!FastTracker凭借几何与场景认知实现多目标跟踪新SOTA,助力智慧交通更轻更快

【导读】

无需昂贵ReID网络,FastTracker凭借几何与场景认知在复杂交通场景中实现精准实时追踪在MOT等多项基准中实现SOTA,为智慧交通带来更轻、更快的多目标跟踪新方案。>>更多资讯可加入CV技术群获取了解哦

目录

一、核心创新:轻量而智能的跟踪机制

occlusion-aware 遮挡处理:不靠ReID,也能“记住”谁是谁

环境感知轨迹校正:让交通规则“指导”跟踪

两阶段匹配策略:先准后全,平衡召回与精度

二、全新基准数据集:FastTrack Benchmark

三、实验结果:全面领先,实时高效

MOT17 测试集:

MOT20 测试集(极端拥挤场景):

自建FastTrack数据集:

轻量级适配能力:

总结:推开多类别实时跟踪的新大门


多目标跟踪(MOT)技术是智能监控、自动驾驶等领域的核心基础,但在现实场景中,尤其是在车辆与行人混杂、遮挡频繁的复杂交通环境中,传统方法往往表现不佳。大多数现有跟踪器(如DeepSORT、ByteTrack)虽然在行人跟踪上表现优秀,但在多类别、高密度、多方向的真实场景中泛化能力有限。

screenshot_2025-08-26_14-01-07.png

今天我们要介绍的FastTracker,正是为了解决这一问题而诞生。它不仅在不依赖重计算网络的情况下实现了多类别实时跟踪,更在多个权威数据集上刷新了记录,表现出了极强的实用性和鲁棒性。

screenshot_2025-08-26_14-03-00.png

论文标题:

FastTracker: Real-Time and Accurate Visual Tracking

论文链接

https://arxiv.org/abs/2508.14370 

代码地址:

github.com/Hamidreza-Hashempoor/FastTracker


一、核心创新:轻量而智能的跟踪机制

  • occlusion-aware 遮挡处理:不靠ReID,也能“记住”谁是谁

传统方法通常依赖复杂的卷积网络(CNN)进行重识别(Re-ID),计算成本高、难以实时运行。FastTracker提出了一种纯几何驱动的遮挡处理机制

  • 覆盖度量(Coverage Metric):通过目标之间的空间重叠情况判断是否发生遮挡,尤其适用于大小差异明显的物体;

  • 速度阻尼(DampenVelocity):对遮挡中的目标降低其运动速度,防止轨迹漂移;

  • 边界框放大(EnlargeBox):适当扩大框体尺寸,提高重现时的匹配成功率。

这些策略共同作用,使得系统在严重遮挡后仍能保持ID一致性,如下图所示:

screenshot_2025-08-26_14-06-56.png

  • 环境感知轨迹校正:让交通规则“指导”跟踪

screenshot_2025-08-26_14-07-51.png

FastTracker创新地引入了场景结构先验,比如车道方向、十字路口、人行道区域等,构建“运动锥”模型:

  • 区域限制(ClampToROI) 利用预先定义的道路区域(ROI),防止目标轨迹漂移到路外等不可能出现的区域。

  • 方向约束(ProjectToCone) 根据车道线方向定义一个合理的“运动锥”,如果目标的预测运动方向超出了这个锥形范围,就将其投影回合理的方向内。

这种方式不仅提升了轨迹连续性,也大幅减少了ID切换,尤其在结构化道路场景中效果显著。

  • 两阶段匹配策略:先准后全,平衡召回与精度

继承并优化了ByteTrack的双阶段匹配机制:

  • 第一阶段:高置信度检测框与现有轨迹匹配(宽松阈值,提高召回);

  • 第二阶段:低置信度检测框与未匹配轨迹匹配(严格阈值,控制误匹配)。

这一策略在保证高精度的同时,尽可能找回被遗漏的目标,尤其适用于遮挡密集的场景。


二、全新基准数据集:FastTrack Benchmark

为更全面评估跟踪器在真实交通环境中的表现,团队发布了FastTrack数据集,具备以下特点:

screenshot_2025-08-26_14-17-07.png

  • 高密度:平均每帧43.5个目标,是CityFlow的5倍以上;

  • 多类别:包含车辆(轿车、卡车、巴士、摩托等)与行人共9类;

  • 多场景:涵盖十字路口、隧道、高速路、人行横道等12类场景;

  • 多光照:包含白天、夜晚、阴影过渡等复杂光照条件。

screenshot_2025-08-26_14-17-16.png

该数据集极大弥补了现有数据集中在复杂性与真实性方面的不足。

如果你也在为寻找数据集苦恼,在Coovally上,持续集成和开源多类高质量数据集覆盖自动驾驶、安防监控、工业检测等多个领域,推动AI开发更加高效与开放。

模型数据集.GIF

!!点击下方链接,立即体验Coovally!!

平台链接:https://www.coovally.com


三、实验结果:全面领先,实时高效

FastTracker在多个公开数据集与自建数据集上均达到最先进水平(SOTA),部分结果如下:

  • MOT17 测试集:

screenshot_2025-08-26_14-22-15.png

  • MOTA: 81.8 | HOTA: 66.4 | IDF1: 82.0

  • ID切换数最低(885),漏检数最低(75162)

  • MOT20 测试集(极端拥挤场景):

screenshot_2025-08-26_14-20-26.png

  • MOTA: 77.9 | HOTA: 65.7 | IDF1: 81.0

  • 全面领先ByteTrack、StrongSORT等主流方法

  • 自建FastTrack数据集:

screenshot_2025-08-26_14-22-52.png

  • MOTA: 63.8 | HOTA: 61.0 | IDF1: 79.2

  • 身份切换数仅为251,显著优于对比基线

  • 轻量级适配能力:

screenshot_2025-08-26_14-23-38.png

即使搭配YOLOX-Nano(参数量仅1M),FastTracker仍能在MOT17上达到:

  • MOTA: 68.3 | IDF1: 71.2

  • 可在边缘设备实现实时推理,极具部署价值。

除了高性能的推理部署,Coovally平台也为算法开发与实验提供了强大支持研究人员和开发者可以在平台上使用自己熟悉的开发工具(如 VS Code、Cursor 等),通过 SSH 协议直连云端算力,享受如同本地一样的实时开发与调试体验,同时调用高性能 GPU 环境,加速实验进展。

SSH.GIF

为了帮助用户更高效地掌握模型训练全过程,Coovally平台还可以直接查看“实验日志”。在每一个实验详情页中,用户都可以实时查看训练日志、输出信息或报错内容,无需额外配置、无缝集成于工作流中!

实验日志.GIF

不论是模型调参、错误排查,还是过程复现,这项新功能都将大幅提升你的实验效率。


总结:推开多类别实时跟踪的新大门

FastTracker通过轻量遮挡处理、环境感知优化、两阶段匹配三大核心创新,在不依赖昂贵ReID网络的前提下,实现了多类别、高密度、复杂场景下的精准实时跟踪。

它不仅在多项权威评测中刷新记录,还提供了首个专注于城市CCTV视角的多类别跟踪数据集FastTrack,极大推动了行业在真实场景中的算法评估与落地进展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值